DEFENCE AGAINST ELECTROMAGNETIC BOMBS The most effective defence against electromagnetic bombs is to prevent their delivery by destroying the launch platform or delivery vehicle, as is the case with nuclear weapons. This however may not always be possible, and therefore systems which can be expected to suffer exposure to the electromagnetic weapons effects must be electromagnetically hardened. The most effective method is to wholly contain the equipment in an electrically conductive enclosure, termed a Faraday cage, which prevents thelectromagnetic field from gaining access to the protected equipment. However, most such equipment must communicate with and be fed with power from the outside world, and this can provide entry points via which electrical transients may enter the enclosure and effect damage. While optical fibres address this requirement for transferring data in and out, electrical power feeds remain an ongoing
DEFENCE AGAINST ELECTROMAGNETIC BOMBS The most effective defence against electromagnetic bombs is to prevent their delivery by destroying the launch platform or delivery vehicle, as is the case with nuclear weapons. This however may not always be possible, and therefore systems which can be expected to suffer exposure to the electromagnetic weapons effects must be electromagnetically hardened. The most effective method is to wholly contain the equipment in an electrically conductive enclosure, termed a Faraday cage, which prevents thelectromagnetic field from gaining access to the protected equipment. However, most such equipment must communicate with and be fed with power from the outside world, and this can provide entry points via which electrical transients may enter the enclosure and effect damage. While optical fibres address this requirement for transferring data in and out, electrical power feeds remain an ongoing