Before advances in genetic applications, gene therapy was unheard of and genetic defects were always inherited, plaguing generations. Today genetic testing is widely available, such as prenatal karyotyping of chromosomes to check for genetic abnormalities. Genetic testing is also useful for families in which autosomal recessive disorders are known to exist, when these are planning to have children. In addition, genetic testing is available for people who might have inherited a genetic disorder which only becomes apparent later in life (for example Huntington's Disease). Individual choice decides whether a person would rather know if they are particularly vulnerable to certain diseases or more likely to die young. Knowing that your life may be short could inspire you to make the most of it while it could equally well cause severe depression.
Today`s advances in gene therapy make it possible to even remove a faulty gene and replace it with a functioning gene in cells lacking this function. Though these techniques are available, they are still in the experimental stages. Somatic cell therapy, for example, uses faulty genes to target the affected areas for genetic treatment. This technique is beneficial in the treatment of cancers and lung, blood and liver disorders. Since the treatment is localised, any unwanted effects of this are not passed on to the next generation.
A more controversial technique is the genetic alteration of gametes which causes a permanent change for the organism as well as for subsequent generations. Of course if the gene is corrected without further negative effects, the genetic disorder has been
successfully eliminated; but if a problem arises it could pass on.
These advances in