The most widely used method of gene splicing, recombinant DNA, uses biochemical "scissors" called restriction enzymes to cut the strings of DNA, selecting required genes. These are then "ferried" by a virus or a bacterium that infects the host, smuggling the gene into the plant's DNA. In this way scientists have been able to create slow ripening and seedless fruit, crops that grow in unfavourable conditions and are resistant to disease or herbicides and milk from cows given a genetically engineered growth hormone.
The benefits of gene technology in terms of food production are enormous. The most common genetically engineered crops contain modifications that make the plants resistant to certain diseases and herbicides, or allow them to produce their own pesticides, thereby eliminating or reducing the need to spray. So-called "Bt corn," for example, contains a gene resistant to the harmful mycotoxin fungus and herbicide producers, Monsanto have created a strain of soybeans genetically modified to be unaffected by their product Roundup. The soybean farmer therefore can avoid targeting specific weeds and require just one