Preview

Hydrate Lab Report

Good Essays
Open Document
Open Document
683 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Hydrate Lab Report
Investigation 3 Student ID E12008926 Evguenia Kelley
Section1
The purpose of the lab is to identify the compound based on a constant composition by performing a serious of tests. The hydrate is solid crystals compound and appears to be dry: since an ionic compound (salt) is crystallized from an aqueous solution (water), by heating the hydrate the water is released from ionic structure; therefore it is possible to measure the weight of the ionic compound and calculate its ratio to the liquid in the hydrate. The goal of the lab is to establish the identity of a given hydrate (“wet salt”) by comparing the results with known hydrate percentages.
Hydrates are ionic compounds (salts) that have a definite amount of
…show more content…

The burner was turned on and the flame came out from the top part. The beaker filled with the weighted hydrate inside, was held over the open flame for few minutes. Visible vapor came out from the beaker, when parts of water were evaporated out of the hydrate. The color of the compound has changed from bright blue to white. After letting the beaker cool down, it was placed on the scale (The scale was initially zeroed out with the beaker, before the hydrate was placed inside) and the new result was recorded in a table (0.498g). The procedure of heating the hydrate in a beaker over an open flame was repeated three more times and the weighting procedure was repeated, the new results were recorded in a table (0.478g, 0.474g, 0.460g) Finally, when the last two measuring weight results were equal (0.460g=0.460g), the decision was made that all the liquid was evaporated from the compound. The procedure was repeated second time for more accurate results. The results were recorded in a table (0.615g, 0.584g, 0.572g, 0.566g) and …show more content…

Since the procedure was repeated twice the final values (76% and 57%) were added and divided by 2 to calculate the average percent values.

Section 3 | Experiment1 | Experiment2 | Hydrate initial value | 0.605g | 0.990g | 1st weight | 0.498g | 0.615g | 2nd weight | 0.478g | 0.584g | 3rd weight | 0.474g | 0.572g | 4th weight | 0.460g | 0.566g |

%Anhydrous Salt in Hydrate (Experiment 1) | %Water in Hydrate (Experiment 1) | %Anhydrous Salt in Hydrate (Experiment 2) | %Water in Hydrate (Experiment 2) | (0.460g/0.605g)*100=76% | 100%-76%=24% | (0.990g/0.566g)*100=57% | 100%-57%=43% |

Average Value of Salt in a Hydrate | (76%+57%)/2=66.5% | Average Value of Water in Hydrate | (24%+43%)/2=33.5% |

Result of the lab was: The given hydrate is CuSO4 5H2O (Copper II Sulfate Pentahydrate)
The calculated value percentage of the Salt in hydrate (66.5%) and Water in hydrate (33.5%), suggests that the given initial compound is CuSO4


You May Also Find These Documents Helpful

  • Satisfactory Essays

    The purpose of this lab was to learn how to determine the percent of water in a hydrate.…

    • 421 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    get the mass of a evaporating dish, put a sample of the hydrate onto the evaporating dish and mass the dish with hydrate.…

    • 293 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    CuCO3 2 CoSO4 2 Fe(OH)3 3 Cr(CN)2 2 Sn(NO2)4 Co2(CO3)3 Pb(CH3COO)4 As2(SO3)3 FePO4 Sn(NO3)2 CuClO4 VI. Inorganic Nomenclature Compound Type Variable Charge Metal Ternary Salts Description Variable Charge Metal + a Polyatomic ion Examples FeSO4 and Fe2(SO4)3 Suffix System Rule Latin or Greek Prefix + ic or ous + Name of Polyatomic For the Metal ic-higher ous-lower ion Formula Charge Name FeSO4 +2…

    • 587 Words
    • 10 Pages
    Satisfactory Essays
  • Good Essays

    Mole Formula Lab

    • 723 Words
    • 3 Pages

    Then from this number the amount of water that was in lost was measured at 1.1 g. After this then the number of moles of anhydrous were calculated from the molar mass of anhydrous. Then the moles of water were calculated. Then the stoichiometric coefficients for each component were calculated. The results found that there was two moles of anhydrous and 35 for water. Thus the empirical formula was found to be:…

    • 723 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Chem Lab - Hydration

    • 1038 Words
    • 4 Pages

    The purpose of this experiment is to provide an opportunity to practice proper heating and cooling techniques and to calculate the formula of a known anhydrous compound and to calculate the percent of water in an unknown hydrate from results.…

    • 1038 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    4. Using the spatula add 3g of copper sulfate hydrate crystals to the crucible and determine the mass.…

    • 971 Words
    • 4 Pages
    Powerful Essays
  • Good Essays

    The purpose of the experiment was to find the percent of water in Epsom salts by heating it. To find the percent of water in a hydrate, the hydrate must be heated. The experiment did not only show how dehydration occurs, but this experiment also gives an accurate and definite portrayal of the amount of water that is removed…

    • 604 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Ionic Hydrate Lab Report

    • 465 Words
    • 2 Pages

    The process is to record the tare weight of a clean crucible. According to WiseGEEK, tare weight is the weight of an object (such as a jar, a cup, or, in this case, a crucible) when it is empty. You will add 2g of the copper sulfate hydrate crystals into the crucible, and then you weigh the crucible with the copper sulfate hydrate crystals and record the data. You then heat the crucible with the hydrate in it with a Bunsen burner for slightly more than 10 minutes, and then you weigh and record the data into your data table. After the weighing, it is reheated for five more minutes, and again weighed and recorded. If the masses are not within 0.05g of each other, you reheat it for another two minutes, weigh the masses again, and record the data. Keep reheating it until the weights are within 0.05g of each other. Then you will calculate and analyze…

    • 465 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Chemical Formula Lab

    • 1437 Words
    • 6 Pages

    Determine the water of hydration in a copper chloride hydrate sample. Conduct a reaction between a solution of copper chloride and solid aluminum. Use the results of the reaction to determine the mass and moles of Cu and Cl in the reaction. • Calculate the empirical formula of the copper chloride compound.…

    • 1437 Words
    • 6 Pages
    Good Essays
  • Satisfactory Essays

    Hydrate Lab

    • 445 Words
    • 2 Pages

    A hydrate was given to our group and the identity of the hydrate was unknown. The lab workers were told to determine the identity of the unknown hydrate. The identity of the hydrate could be determined by calculating the hydrate’s percent of water. So the lab workers set out to determine the water percent of the unknown hydrate.…

    • 445 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    Osmosis Lab Report

    • 1235 Words
    • 5 Pages

    To what extent does varying the Sodium Chloride concentration impact the mass change of Solanum tuberosum cubes?…

    • 1235 Words
    • 5 Pages
    Powerful Essays
  • Good Essays

    Hydrate Lab

    • 500 Words
    • 2 Pages

    A hydrate is a substance that holds water in a certain ratio. As Hydrates are compounds with constant composition, we were able to easily determine this ratio by evaporating the water and then calculating a common ratio. We had Copper sulfate pentahydrous. In our experiment and on further calculations we observed that generally ten molecules of water combine with one molecule of…

    • 500 Words
    • 2 Pages
    Good Essays
  • Good Essays

    The mass percent of water was determined using the mass of water and dividing it by the total mass of the hydrate and then multiplying that answer by 100%. The number of moles of water in a hydrate was determined by taking the mass of the water released and dividing it by the molar mass of water. The number of moles of water and the number of moles of the hydrate was used to calculate the ratio of moles of water to moles of the sample. This ratio was then used to write the new and balanced equation of the dehydration process. The sample was then rehydrated to the original state and the percent of the hydrate recovered was calculated by using the mass of the rehydrated sample by the mass of the original hydrate and then multiplied by 100%.…

    • 823 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Formula of a Hydrate

    • 484 Words
    • 2 Pages

    Results: According to our results anhydrous salt magnesium has a formula hydrate of MgSO4 + 7H2O. The average moles of water per mole of anhydrous salt obtained: 6.93 moles. This was the average between trial 1 and trial 2. Even though our samples were not measures exactly even we obtained the same results for trail 1 and 2 for the percent of water in the hydrate =51% and percent of anhydrous salt in the hydrate =49%. The mass of hydrate in trial 1 =3.227g and trial 2 =1.973g. The mass of anhydrous salt trial 1 =1.581g and trial 2 =0.972g. Mass of water liberated trial 1 =1.646g and trial 2 =1.001g. Moles of anhydrous salt in 100g of hydrate trial 1 =0.407moles and trial 2 =0.807 moles. Moles of water in 100g of hydrate trial 1 =2.83 moles and trial =2 5.58 moles. Moles of…

    • 484 Words
    • 2 Pages
    Satisfactory Essays
  • Better Essays

    Hydrate Lab

    • 970 Words
    • 4 Pages

    The lab in which we conducted last Tuesday was an analysis of a hydrate and what happens to it when it is heated. A hydrate is a crystalline compound which water molecules are chemically bound to it. In the lab, we were to analyze the difference in grams of the hydrate and the anhydrate. An anhydrate is the crystalline compound without the water molecules bound to it. During our lab, we were to heat up the crucible, the crucible with hydrate, and the crucible with an anhydrous and write down each weight, then repeat. Once we completed that task then we were to find the number of moles of water lost, the number of moles of anhydrous copper sulfate, percent comp of water in the hydrated copper sulfate, the mole ratio of moles of water and moles of anhydrous copper sulfate. Once this is all done, we found our percent error and compared it to the exact value.…

    • 970 Words
    • 4 Pages
    Better Essays