Preview

Insights into Protein'DNA Interactions through Structure Network Analysis

Powerful Essays
Open Document
Open Document
11158 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Insights into Protein'DNA Interactions through Structure Network Analysis
Insights into Protein–DNA Interactions through Structure Network Analysis
R. Sathyapriya.¤, M. S. Vijayabaskar., Saraswathi Vishveshwara*
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India

Abstract
Protein–DNA interactions are crucial for many cellular processes. Now with the increased availability of structures of proteinDNA complexes, gaining deeper insights into the nature of protein–DNA interactions has become possible. Earlier, investigations have characterized the interface properties by considering pairwise interactions. However, the information communicated along the interfaces is rarely a pairwise phenomenon, and we feel that a global picture can be obtained by considering a protein–DNA complex as a network of noncovalently interacting systems. Furthermore, most of the earlier investigations have been carried out from the protein point of view (protein-centric), and the present network approach aims to combine both the protein-centric and the DNA-centric points of view. Part of the study involves the development of methodology to investigate protein–DNA graphs/networks with the development of key parameters. A network representation provides a holistic view of the interacting surface and has been reported here for the first time. The second part of the study involves the analyses of these graphs in terms of clusters of interacting residues and the identification of highly connected residues (hubs) along the protein–DNA interface. A predominance of deoxyribose–amino acid clusters in b-sheet proteins, distinction of the interface clusters in helix–turn–helix, and the zipper-type proteins would not have been possible by conventional pairwise interaction analysis. Additionally, we propose a potential classification scheme for a set of protein–DNA complexes on the basis of the protein–DNA interface clusters. This provides a general idea of how the proteins interact with the different components of DNA in different complexes. Thus,



References: 1. Luscombe NM, Thornton JM (2002) Protein–DNA interactions: amino acid conservation and the effects of mutations on binding specificity. J Mol Biol 320: 991–1009. 2. Lustig B, Jernigan RL (1995) Consistencies of individual DNA base–amino acid interactions in structures and sequences. Nucleic Acids Res 23: 4707–4711. 3. Prabakaran P, Siebers JG, Ahmad S, Gromiha MM, Singarayan MG, et al. (2006) Classification of protein-DNA complexes based on structural descriptors. Structure 14: 1355–1367. 4. Sathyapriya R, Brinda KV, Vishveshwara S (2006) Correlation of the side-chain hubs with the functional residues in DNA binding protein structures. J Chem Inf Model 46: 123–129. 5. Luscombe NM, Laskowski RA, Thornton JM (2001) Amino acid–base interactions: a three-dimensional analysis of protein–DNA interactions at an atomic level. Nucleic Acids Res 29: 2860–2874. 6. Jones S, van Heyningen P, Berman HM, Thornton JM (1999) Protein-DNA interactions: a structural analysis. J Mol Biol 287: 877–896. 7. Siggers TW, Silkov A, Honig B (2005) Structural alignment of protein–DNA interfaces: insights into the determinants of binding specificity. J Mol Biol 345: 1027–1045. 8. Ahmad S, Kono H, Arauzo-Bravo MJ, Sarai A (2006) ReadOut: structure-based calculation of direct and indirect readout energies and specificities for protein– DNA recognition. Nucleic Acids Res 34: W124–W127. 9. Baker CM, Grant GH (2007) Role of aromatic amino acids in protein-nucleic acid recognition. Biopolymers 85: 456–470. 10. Coulocheri SA, Pigis DG, Papavassiliou KA, Papavassiliou AG (2007) Hydrogen bonds in protein–DNA complexes: where geometry meets plasticity. Biochimie 89: 1291–1303. 11. Lejeune D, Delsaux N, Charloteaux B, Thomas A, Brasseur R (2005) Proteinnucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure. Proteins 61: 258–271. 12. Gromiha MM, Siebers JG, Selvaraj S, Kono H, Sarai A (2005) Role of inter and intramolecular interactions in protein–DNA recognition. Gene 364: 108–113. 13. Kono H, Sarai A (1999) Structure-based prediction of DNA target sites by regulatory proteins. Proteins 35: 114–131. 14. Gromiha MM, Siebers JG, Selvaraj S, Kono H, Sarai A (2004) Intermolecular and intramolecular readout mechanisms in protein–DNA recognition. J Mol Biol 337: 285–294. 15. Kannan N, Vishveshwara S (1999) Identification of side-chain clusters in protein structures by a graph spectral method. J Mol Biol 292: 441–464. 16. Patra SM, Vishveshwara S (2000) Backbone cluster identification in proteins by a graph theoretical method. Biophys Chem 84: 13–25. 17. Vendruscolo M, Paci E, Dobson CM, Karplus M (2001) Three key residues form a critical contact network in a protein folding transition state. Nature 409: 641–645. 18. Greene LH, Higman VA (2003) Uncovering network systems within protein structures. J Mol Biol 334: 781–791. 19. Atilgan AR, Turgut D, Atilgan C (2007) Screened nonbonded interactions in native proteins manipulate optimal paths for robust residue communication. Biophys J 92: 3052–3062. 20. Chang S, Jiao X, Li CH, Gong XQ, Chen WZ, et al. (2008) Amino acid network and its scoring application in protein–protein docking. Biophys Chem 134: 111–118. 21. del Sol A, O’Meara P (2005) Small-world network approach to identify key residues in protein-protein interaction. Proteins 58: 672–682. 22. Brinda KV, Kannan N, Vishveshwara S (2002) Analysis of homodimeric protein interfaces by graph-spectral methods. Protein Eng 15: 265–277. 23. Brinda KV, Vishveshwara S (2005) A network representation of protein structures: implications for protein stability. Biophys J 89: 4159–4170. 24. Sen TZ, Kloczkowski A, Jernigan RL (2006) A DNA-centric look at proteinDNA complexes. Structure 14: 1341–1342. 25. Luscombe NM, Austin SE, Berman HM, Thornton JM (2000) An overview of the structures of protein-DNA complexes. Genome Biol 1: REVIEWS001. 26. Juo ZS, Chiu TK, Leiberman PM, Baikalov I, Berk AJ, et al. (1996) How proteins recognize the TATA box. J Mol Biol 261: 239–254. 27. Pastor N, Pardo L, Weinstein H (1997) Does TATA matter? A structural exploration of the selectivity determinants in its complexes with TATA boxbinding protein. Biophys J 73: 640–652. 28. Zhao X, Herr W (2002) A regulated two-step mechanism of TBP binding to DNA: a solvent-exposed surface of TBP inhibits TATA box recognition. Cell 108: 615–627. 29. Wintjens R, Rooman M (1996) Structural classification of HTH DNA-binding domains and protein–DNA interaction modes. J Mol Biol 262: 294–313. 30. Risse G, Jooss K, Neuberg M, Bruller HJ, Muller R (1989) Asymmetrical recognition of the palindromic AP1 binding site (TRE) by Fos protein complexes. EMBO J 8: 3825–3832. 31. Leonard DA, Rajaram N, Kerppola TK (1997) Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun. Proc Natl Acad Sci U S A 94: 4913–4918. 32. Ellenberger TE, Brandl CJ, Struhl K, Harrison SC (1992) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted a helices: crystal structure of the protein-DNA complex. Cell 71: 1223–1237. 33. Grant PA, Sterner DE, Duggan LJ, Workman JL, Berger SL (1998) The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol 8: 193–197. 34. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal ˚ structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260. 35. Luger K, Richmond TJ (1998) DNA binding within the nucleosome core. Curr Opin Struct Biol 8: 33–40. PLoS Computational Biology | www.ploscompbiol.org 14 September 2008 | Volume 4 | Issue 9 | e1000170 Protein-DNA Structure Networks 36. Woodcock CL (2006) Chromatin architecture. Curr Opin Struct Biol 16: 213–220. 37. Edayathumangalam RS, Weyermann P, Gottesfeld JM, Dervan PB, Luger K (2004) Molecular recognition of the nucleosomal ‘‘supergroove’’. Proc Natl Acad Sci U S A 101: 6864–6869. 38. Cavazza B, Brizzolara G, Lazzarini G, Patrone E, Piccardo M, et al. (1991) Thermodynamics of condensation of nuclear chromatin. A differential scanning calorimetry study of the salt-dependent structural transitions. Biochemistry 30: 9060–9072. 39. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–242. 40. Kannan N, Vishveshwara S (1999) Identification of side-chain clusters in protein structures by a graph spectral method. J Mol Biol 292: 441–464. 41. Jones S, Shanahan HP, Berman HM, Thornton JM (2003) Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins. Nucleic Acids Res 31: 7189–7198. 42. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to Algorithms. 2nd edition. New York: McGraw-Hill. PLoS Computational Biology | www.ploscompbiol.org 15 September 2008 | Volume 4 | Issue 9 | e1000170

You May Also Find These Documents Helpful

  • Satisfactory Essays

    Founded that DNA molecules ensemble a tightly coiled helix and is composed of 2 to 3 chains of nucleotides…

    • 499 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    Agr 3303 Exam 2

    • 2117 Words
    • 9 Pages

    1. The primary structure of a protein represents: (*) the amino acid sequence. (2) the functional configuration. (3) the subunits of a protein. (4) a pleated sheet. (5) a alpha helix. 2. In prokaryotes, most genes are organized into operons. One component of an operon is the structural genes. Which of the following best describes a structural gene? (*) a sequence of DNA that specifies a polypeptide. (2) a sequence of DNA that produces tRNA's. (3) a sequence of DNA that interacts with the small ribosomal subunit. (4) a sequence of DNA that is recognized by RNA polymerase. (5) a sequence of DNA that is involved in forming the structure of a double helix molecule. 3. Identify the correct sequence of steps in protein synthesis in prokaryotes: A - binding of large ribosomal subunit to initiation complex B - peptide bond formation C - binding of mRNA to small subunit of ribosome D - binding of charged tRNA to A site E - release of fmet-tRNA and translocation (1) B, C, A, D, E (2) B, E, C, A, D (3) C, E, B, A, D (*) C, A, D, B, E (5) C, D,…

    • 2117 Words
    • 9 Pages
    Good Essays
  • Good Essays

    Dna Worksheet

    • 361 Words
    • 2 Pages

    A molecule of DNA is made up of long chains of polymers and monomers called nucleotides. Those chains, two in particular that compose a strain of DNA, are formed by the grouping of nucleotides into polynucleotides. A nitrogenous base, a sugar, and a phosphate group make up the composition of a nucleotide. In the case of DNA, the four nucleotides that are found along the chain of DNA are thymine (T), cytosine (C), adenine (A), and guanine (G). Those nucleotides are joined by their covalent bonds, more specifically the sugars and phosphates which compose the sugar-phosphate backbone of the polynucleotide.…

    • 361 Words
    • 2 Pages
    Good Essays
  • Satisfactory Essays

    Dna Work Sheet

    • 491 Words
    • 2 Pages

    Describe the structure of DNA.DNA is thread formed by two strands, related together to form a double helix. The double helix looks like a twisted ladder. The sides of this ladder are long unites called nucleotides and are made of three parts; a nitrogenous base, a sugar, and a phosphate group. The sides of the ladder or the nucleotides from the two separate strands of the DNA are attached by an appendage made of one of four separate bases. These appendages represent the rungs of the DNA ladder and are attached to the complimentary strand of the DNA. The bases or rungs are made of either Adenine (A) OR Thymine (T) or Cytosine (C) and Guanine (G). The attachment of the strands by the bases is specific Adenine can only join with Thymine, and Cytosine can only join with Guanine. Since this base pairing is specific, if one knows the sequence of bases a long one strand of the DNA one will also know the strand of the DNA one will also know the sequence along the complimentary strand.…

    • 491 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    DNA is made up of two strands. At one end of each strand there is a phosphate group attached to the carbon atom number 5 of the deoxyribose (this indicates the 5' terminal) and at the other end of each strand is a hydroxyl group attached to the carbon atom number 3 of the deoxyribose (this indicates the 3' terminal). The strands run in opposite directions and so we say that they are antiparallel. One strand runs in a 5'-3' direction and the other runs in a 3'-5' direction. Adjacent nucleotides are attached together via a bond between the phosphate group of one nucleotide and the carbon atom number 3 of the deoxyribose of the other nucleotide.…

    • 2219 Words
    • 9 Pages
    Powerful Essays
  • Satisfactory Essays

    Biology Quiz Paper

    • 1178 Words
    • 5 Pages

    | | The most important source of nitrogen entering the body is from: | | | Student Response | Value | Correct Answer | Feedback | A. | nucleic acids. | | | | B. | amino acids contained in dietary protein. | 100% | | | C. | urea. | | | | D. | ammonia.…

    • 1178 Words
    • 5 Pages
    Satisfactory Essays
  • Good Essays

    Bio Frq

    • 1503 Words
    • 7 Pages

    Different types of bonds/interactions in proteins lead to different kinds of structures. Three of the most commonly known chemical bonds in proteins include the hydrogen bond, the covalent bond, and the ionic bond. In hydrogen bonds, hydrogen interacts with oxygen, nitrogen, or fluorine to form either the alpha helix, or the beta sheet, which in turn determines its secondary, tertiary, or quaternary structure. Another type of bonds, the covalent bond, links amino acids together by sharing electrons; this bond is critical to proteins in that it determines the amino acid sequence, and the primary structure of the peptide chain. Lastly, the ionic bond, it is a charged R group that determines whether the protein structure would be tertiary, or quaternary.…

    • 1503 Words
    • 7 Pages
    Good Essays
  • Satisfactory Essays

    Biology 1010 Study Notes

    • 397 Words
    • 2 Pages

    16. How do the DNA base sequences specify the sequences of amino acids in a protein?…

    • 397 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Microbiology Task 1

    • 406 Words
    • 2 Pages

    Single Stranded Binding Proteins are available to hold the unwound DNA strands in position & prevents premature annealing with another DNA strand…

    • 406 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    1. 2. 2 3. 4. 5. Economics, Computational Biology Comp tational Biolog and Bioinformatics Bioinformatics, Weather prediction, Heat and mass transfer, Statistical analysis, and a myriad of other application.…

    • 3404 Words
    • 14 Pages
    Satisfactory Essays
  • Good Essays

    Homework04

    • 519 Words
    • 3 Pages

    2. PROSITE (http://au.expasy.org/prosite/) is a database of protein domains, families and functional sites. Each PROSITE record is often associated with a pattern or profile to describe the protein domain or functional site. Please look at the record of PDOC00300 (http://prosite.expasy.org/PDOC00300) which is a GATA-type zinc finger domain that binds to DNA sites with the consensus sequence (A/T)GATA(A/G). This type of “zinc finger” domains consist of a consensus sequence of C-x2-C-x17-C-x2-C , which means one Cys, two any amino acids, one Cys, 17 any amino acids, one Cys, two any amino acids, and one Cys. Please use this consensus sequence, and write an equivalent regular expression pattern.…

    • 519 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Violinist Thumb

    • 490 Words
    • 2 Pages

    Studying DNA can be extremely tedious and overwhelming. When Francis Crick and James Watson introduced the double helix, it was easy, for scientist, to comprehend the system, but it was rather difficult to understand how the DNA genes made proteins, which is the vital part. To fully grasp this concept scientist had to not only examine DNA, but they had to study RNA as well. The dispute, however, with DNA is that it actually is an elaborate and intricate code where these codes conceal its instructions.…

    • 490 Words
    • 2 Pages
    Good Essays
  • Satisfactory Essays

    You must create a moving PowerPoint presentation or video to show the structure of DNA, how it was discovered and how it can be used in genetic engineering. If you cannot create a PowerPoint or video then you must produce a storyboard/written set of instructions describing what you would have done. Your homework should be at least 1 page typed (size 12 font) or sensible sized handwriting (8 words per line). Labelled diagrams, tables and charts are also appropriate for this task but you must describe them in your own words.…

    • 341 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    miss

    • 694 Words
    • 3 Pages

    Explain the relevance of the electronic configuration of hydrogen, carbon, oxygen and nitrogen to biological molecules…

    • 694 Words
    • 3 Pages
    Satisfactory Essays
  • Better Essays

    Bacteria, zebras, mosquitoes, anacondas, essentially all living things have one thing in common which makes them what they are. It is DNA. It is one of the greatest biological discoveries in the history of mankind. It is not only related to biology but is tied to the study of chemistry as well because of the convoluted molecular structure. DNA is short for the molecule deoxyribonucleic acid. RNA or ribonucleic acid is another nucleic acid derived from DNA and used as a template to make proteins, the product of the genetic code. In an article, “What is DNA?” written by James Randerson, DNA is described as, “...the master code for life ... the instruction book that each organism uses to run its body and govern its behavior, a book that each creature hands on to its offspring, either in full or in part.” In other words it describes how at times not the whole book (DNA) is passed down from parent to progeny. A father and mother both contribute their DNA making the son similar but not identical to his father and mother. Also, because DNA stores all genetic information including diseases, which can be passed down from generation to generation. These diseases are the effect of a mutation in the DNA structure.…

    • 1887 Words
    • 8 Pages
    Better Essays

Related Topics