Review Article
Mechanisms of Disease
F R A N K L I N H . E P S T E I N , M. D. , Editor
ION CHANNELS — BASIC SCIENCE AND CLINICAL DISEASE
AND
MICHAEL J. ACKERMAN, M.D., PH.D., DAVID E. CLAPHAM, M.D., PH.D.
I
ON channels constitute a class of proteins that is ultimately responsible for generating and orchestrating the electrical signals passing through the thinking brain, the beating heart, and the contracting muscle. Using the methods of molecular biology and patch-clamp electrophysiology, investigators have recently cloned, expressed, and characterized the genes encoding many of these proteins. Ion-channel proteins are under intense scrutiny in an effort to determine their roles in pathophysiology and as potential targets for drugs. Defective ion-channel proteins are responsible for cystic fibrosis,1 the long-QT syndrome,2 heritable hypertension (Liddle’s syndrome),3,4 familial persistent hyperinsulinemic hypoglycemia of infancy,5,6 hereditary nephrolithiasis (Dent’s disease), and a variety of hereditary myopathies,7-9 including generalized myotonia (Becker’s disease), myotonia congenita (Thomsen’s disease), periodic paralyses, malignant hyperthermia, and central core storage disease (Table 1). Elucidating the mechanisms of these diseases will benefit medicine as a whole, not just patients with a particular disease. For instance, although the inherited long-QT syndrome is not common, identifying the underlying defects in the KVLQT1 and HERG potassium channels and the SCN5A sodium channels may benefit the study of ventricular arrhythmias, which are responsible for 50,000 sudden deaths each year in the United States. Likewise, al-
though a defect in the recently cloned epithelial sodium channel (ENaC) is the basis of a very rare form of inherited hypertension (Liddle’s syndrome, or pseudoaldosteronism), normal ENaC may serve as an alternative target in attempts to correct the physiologic defects created by the cystic