In the typical scientific laboratory there is a large amount of data that must be tracked and analysed. In my current work setting we collect data from outside laboratories, analyse the data, and then return the data. We process thousands of samples per week. This makes tracking and sorting the data very cumbersome. We basically serve as a clearinghouse for data to be batched out to our customers, the independent researcher.
Our laboratory considers itself a high-throughput sequencing centre. Our daily objective is to make the lab more automated. We are continually striving to use more robots or automated data entry. For automated data entry we use bar codes. Bar coding tends to have fewer errors in data entry. It also allows us to generate a greater amount of information for any given sample. The more we can automate the process the more samples we are able to put through the system.
Each of the independent researchers in the company is looking for a particular disease by identifying the disease-causing gene. Once the gene has been located the researcher must get the DNA sequence from the gene. That is our job. We at the sequencing centre take the DNA sample, with the gene, and run the sample on our automated machines. Once the sample has been analysed we put the analysed sample, also known as the DNA sequence, into a database that the researcher can access. This is a very general idea of what the Sequencing Centre does. The role of the Laboratory Information Management System (LIMS) is to keep track of this data.
The accuracy of the LIMS is crucial for an efficient and effective workflow. The analysed sample must be coordinated with the correct sample name that the researcher gives to the Sequencing Centre. This means that everything must be entered into the database correctly. The data must also exist in a safe and accessible database. The data flow can be characterized in the following context diagram. We have just begun the implementation of a new