Breast cancer is a common malignancy diagnosed in women. In the United States one in eight women who live to the age of 95 will be diagnosed with breast cancer. Even with the high rate of diagnosis, it remains the most treatable due to early screening and improved detection methods. Mammography is the precedent for screening and diagnostic procedures in the breast cancer field. Its enhancements through the years, together with higher resolution, faster, lower-dose screen-film combinations, have contributed to earlier cancer detection in women.
Dr. Wilhelm Conrad Roentgen discovered x-rays while working with a Crookes tube in his laboratory on November 8, 1895. Eighteen years later mammography got its rudimentary beginnings due to these ionizing x-rays. In 1913, Berlin Albert Soloman, a German surgeon, was among the first to discover that breast cancer could be radiographed. In a 1927 medical textbook the first instance of a radiograph of a living person’s breast taken by Otto Kleinschmidt was published. Although these recordings of mammography appeared in early years, it wasn’t until the late 50’s that it was popularized by Robert Egan, from the United States and Professor Charles M. Gros, from Germany. These men started using mammography for the diagnosis and evaluation of breast cancer. With this popularity of mammography came vast improvements with technology. Before 1969, many machines were not designed for imaging exclusively breast tissue. For example, imaging units from the past were comprised of tungsten targets, which were primarily used for imaging anatomy that required relatively higher doses of radiation. These units also worked off of a large focal spot which decreases the detail of the image. This was not ideal for imaging something as minute as a breast calcification. In the 60’s direct exposure x-ray film was the film of choice. This film often required a long exposure time which causes a higher dose of radiation to the
Bibliography: Vol. 3, 11th ed. St Louis, Missouri, 2007 2 5. Dan Herlith. “Historical Technical Developments in Mammography.” Technology in Cancer Research and Treatment. April 2002. May 16, 2008 http://www.tcrt.org NEW6. Herlith, Dan. “Computed Tomography” University of Notre Dame. 2007. May 21, 2008 http://www.nd.edu/~aapraham/MedicalPhys/ct%20project%20-%20reilly%20composite%20draft.ppt#1 7. “Radiology info.” American College of Radiology. Aug 15, 2006. May 18, 2008 http://radiologyinfo.com 8. Sherer, Mary Alice. Radiation Protection in Medical Radiography. 5th ed. St. Louis, Missouri, 2006