Nanoelectronics refer to the use of nanotechnology on electronic components, especially transistors. Although the term nanotechnology is generally defined as utilizing technology less than 100nm in size, nanoelectronics often refer to transistor devices that are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. As a result, present transistors (such as CMOS90 from TSMC or Pentium 4 Processors from Intel) do not fall under this category, even though these devices are manufactured under 90nm or 65nm technology.
This paper is all about the use of nanotechnology in electronics The aim of Nanoelectronics is to process, transmit and store information by taking advantage of properties of matter that are distinctly different from macroscopic properties. The relevant length scale depends on the phenomena investigated: it is a few nm for molecules that act like transistors or memory devices, can be 999 nm for quantum dot where the spin of the electron is being used to process information. Microelectronics, even if the gate size of the transistor is 50 nm, is not an implementation of nanoelectronics, as no new qualitative physical property related to reduction in size are being exploited.
Introduction:
Nanoelectronics: fig no:1 nanoelectronics
Nanoelectronics are sometimes considered as disruptive technology because present candidates are significantly different from traditional transistors. Some of these candidates include: hybrid molecular/semiconductor electronics, one dimensional nanotubes/nanowires, or advanced molecular electronics. The sub-voltage and deep-sub-voltage nanoelectronics are specific and important fields of R&D, and the appearance of new ICs operating near theoretical limit (fundamental, technological, design methodological, architectural, algorithmic) on energy consumption per 1 bit processing is inevitably. The important case of fundamental ultimate limit for logic operation is
References: 1. Melosh, N.; Boukai, Akram; Diana, Frederic; Gerardot, Brian; Badolato, Antonio; Petroff, Pierre & Heath, James R. (2003). 2. Aviram, A.; Ratner, M. A. (1974). "Molecular Rectifier". Chemical Physics Letters 29: 277. 3. Aviram, A. (1988). "{{{title}}}". Journal of the American Chemical Society 110: 5687-5692. 4. Postma, Henk W. Ch.; Teepen, Tijs; Yao, Zhen; Grifoni, Milena & Dekker, Cees (2001). "Carbon nanotube single-electron transistors at room temperature". Science 293 (5527). :10.1126/science.1061797