Molarity and osmolarity are not commonly used in osmometry because they are temperature dependent. This is because water changes its volume with temperature (See: Vapour pressure of water). However, if the concentration of solutes is very low, osmolarity and osmolality are considered equivalent, as one liter of a dilute aqueous solution at normal temperatures has a mass of very nearly one kilogram.
Osmolarity and tonicity are related, but different concepts. Thus, the terms ending in -osmotic (isosmotic, hyperosmotic, hyposmotic) are not synonymous with the terms ending in -tonic (isotonic, hypertonic, hypotonic). The terms are related in that they both compare the solute concentrations of two solutions separated by a membrane. The terms are different because osmolarity takes into account the total concentration of penetrating solutes and non-penetrating solutes, whereas tonicity takes into account the total concentration of only non-penetrating solutes.[2]
Penetrating solutes can diffuse through the cell membrane, causing momentary changes in cell volume as the solutes "pull" water molecules with them. Non-penetrating solutes cannot cross the cell membrane, and therefore osmosis of water must occur for the solutions to reach equilibrium.
A solution can be both hyperosmotic and isotonic.[2] For example, the intracellular fluid and extracellular can be hyperosmotic, but isotonic – if the total concentration of solutes in