Melissa Werderitch Biology 157 11/6/06
Introduction
In a journal article written by Florian Lang, osmosis is essentially explained as the flow of water from one area to another that are separated by a selectively permeable membrane to equalize concentrations of particles in the two locations (Lang, 1997). Osmosis is able to maintain osmotic pressure and regulate a cell's volume.
In a hypotonic () or hypertonic () environment, a cell may be liable to gain or lose water. Osmotic pressure is known as the amount of force needed to prevent the flow of water through a membrane. Osmotic pressure allows a cell to prevent itself from shrinking or swelling and possibly bursting. However, it is necessary in some cases to perform these actions to prevent the opposite from occurring, that can also be known as stabilizing the osmotic pressure of the cell (Lang, 1997). Studies have shown that ions of sodium, potassium, hydrogen, and chloride have been most successful in controlling cell volume by exposing environments surrounding a cell to the ions.
It necessary to study what effects the previously mentioned ions would have on another substance or solute dissolved in water. Osmoregulation is the regulation of water and ion concentrations in a cell (Driscoll). Animals must regulate there water intake, and they do so by performing this process. Animals like fish and insects have an isotonic environment, and they use a chemical called trimethylamine oxide to maintain this balance. However, larger water animals or vertebrates in a saltwater area are in more of a hypotonic environment, and are exposed to a large amount of ions including Na+ and Cl-, therefore they must absorb more water to equalize the concentrations of these ions. This process is usually performed by the kidneys. Freshwater fish are in a hypertonic environment, so they maintain their balance by secreting water through urine. Other animals like