I explored the patterns created by length of the sequence used to create the spiralaterals. I also explored the difference in the pattern when the numbers were in a different order.
Process: Initially I believed that all spiralaterals ended at their starting point, but I later found out that this wasn't true. I also believed that the order of the sequence of numbers wouldn't change the shape but it would simply have it turned a different way. For each of my exploration questions I simply drew spiralaterals that satisfied the question. For example one of my questions was "Does the number of numerals in the sequence change the pattern?" To test this I drew a three number spiralateral, a 4 …show more content…
I also discovered that if they had an even number of numerals in the sequence, but they repeated a number then it would end. All spiralaterals with an odd number of numerals will end where the started and continue to cycle around. If a spiralateral repeats a number then it must end; this applies to all sequences whether they be odd or even. This must be true because the repeated number turn the spiralateral back towards the pattern. In the spiralaterals that never end the repeated number changes the way the group of segments are going and causes the spiralateral to complete