Power Flow Analysis
7.1
INTRODUCTION
Power flow analysis is concerned with describing the operating state of an entire power system, by which we mean a network of generators, transmission lines, and loads that could represent an area as small as a municipality or as large as several states. Given certain known quantities—typically, the amount of power generated and consumed at different locations—power flow analysis allows one to determine other quantities. The most important of these quantities are the voltages at locations throughout the transmission system, which, for alternating current (a.c.), consist of both a magnitude and a time element or phase angle. Once the voltages are known, the currents flowing through every transmission link can be easily calculated. Thus the name power flow or load flow, as it is often called in the industry: given the amount of power delivered and where it comes from, power flow analysis tells us how it flows to its destination. Owing mainly to the peculiarities of a.c., but also to the sheer size and complexity of a real power system—its elaborate topology with many nodes and links, and the large number of generators and loads—it turns out to be no mean feat to deduce what is happening in one part of the system from what is happening elsewhere, despite the fact that these happenings are intimately related through well-understood, deterministic laws of physics. Although we can readily calculate voltages and currents through the branches of small direct current (d.c.) circuits in terms of each other (as seen in Chapter 2), even a small network of a handful of
a.c. power sources and loads defies our ability to write down formulas for the relationships among all the variables: as a mathematician would say, the system cannot be solved analytically; there is no closed-form solution. We can only get at a numerical answer through a process of successive approximation or iteration.
In order to find