Abstract: Proteomics is a study of the proteome of an organism. The last few decades have seen a rapid progress in the development of this field. This paper attempts to compare and contrast the way in which proteomics studies are performed today as opposed to those performed ten years ago and analyse its future implications.
The thrust of research while studying biology at a molecular level initially was focused specifically on the genomes of various organisms. As scientists discovered the intricacies of genes and their functionalities, the attention was soon drawn towards the end result of the central dogma of molecular biology, namely, the proteins, produced through translation of RNAs. Therefore, to study the proteins produced in an organism, referred to as the proteome, not just as products of a genome, but more importantly how they interact and bring about changes at the macro level, the field of proteomics has emerged. (1)
Proteins play a pivotal role in carrying out various functions in a body at the structural and dynamic levels. Proteins as enzymes and hormones regulate the vital metabolic processes and as structural components provide stability to the cellular components. The knowledge obtained through the study of these systems gives an insight into the overall functioning of the living organisms. In spite of having similar genetic blue prints, the protein expression in various organisms are regulated differently through diverse networks of protein-protein interactions. Hence, proteomics provides an understanding about these regulatory processes and establishes the differences and similarities between the evolutionary pathways of the organisms by grouping them under phylogentic trees. Further, drugs can be developed for specific diseases by designing structural analogues of proteins responsible for diseased conditions after