Western Governors University
ID#
A. Company A
1. Determine expected completion times for each project activity.
T= (Optimistic + 4Probable + Pessimistic)/6
A. T=(2 + 4(3) + 4)/6 –OR -- T=3
B. T=(5 + 4(6) + 13)/6 – OR – T= 7
C. T=(3 + 4(4) + 8)/6 – OR – T=4.5
D. T=(10 + 4(11) + 15)/6 – OR – T=11.5
E. T=(4 + 4(5) + 6)/6 – OR – T= 5
F. T=(8 + 4(10) + 12)/6 – OR – T=10
G. T= (4 + 4(6) + 11)/6 – OR – T= 6.5
H. T=(8 + 4(10) + 18)/6 – OR – T= 11
I. T= (3 + 4(6) + 12)/6 – OR – T= 6.5
J. T=(2 + 4(3) + 7)/6 – OR – T= 3.5
1. Determine Variance for each project
a. = .1111
b. = 1.778
c. = .694
d. = .694
e. = .1111
f. = .4444
g. = 1.361
h. = 2.778
i. = 2.25
j. = .694
2. SEE ATTACHED DOCUMENT “PERT CHART”
3. Determine each of the following:
Task
Earliest Start
Latest Start
Earliest Finish
Latest Finish
Slack
A
0
6.5
3
9.5
6.5
B
0
0
7
7
0
CRITICAL
C
3
9.5
7.5
14
6.5
D
7
7.5
18.5
19
0.5
E
7.5
14
12.5
19
6.5
F
7
7
17
17
0
CRITICAL
G
17
17
23.5
23.5
0
CRITICAL
H
18.5
19
29.5
30
0.5
I
23.5
23.5
30
30
0
CRITICAL
J
30
30
33.5
33.5
0
CRITICAL
a. Duration of project: 33.5 weeks
b. Slack for task A: 6.5 weeks
c. Slack for task H: 0.5 weeks
d. Task F scheduled start: week 7
e. Task I scheduled completion: week 30
4. Probability of completing project in 34 weeks:
a.
,
b. z = (34-33.5)/2.55 = .19
P(z ≤ .19) = .5753
Probability of 34 week completion = .5753 = 57.53%
B. Company B
Task
Expected Time to Complete Normal Cost
Crash
Cost
Maximum Reduction in Time
Crash Cost per week
Normal (weeks)
Crash
(weeks)
START
A
3
2 $ 8,400 $ 11,200
1
$ 2,800
B
7
5
$ 28,000 $ 40,000
2
$ 6,000
C
4.5
3
$ 18,000 $ 24,000
1.5
$ 4,000
D
11.5
7
$ 36,800 $ 44,800
4.5
$ 1,778
E
5
3
$ 14,000 $ 16,800
2
$