ESA/ESTEC, NOORDWIJK, THE NETHERLANDS / 12 – 14 APRIL 2011
Gancet J.(1), Ilzkovitz M.(2), Cheron G.(3), Ivanenko Y.(4), van der Kooij H.(5), van der Helm F.(6), Zanow, F.(7) Thorsteinsson F.(8)
(1) Space Applications Services N.V., Leuvensesteenweg 325, 1932 Zaventem, Belgium,
Email: jeremi.gancet@spaceapplications.com
(2) Space Applications Services N.V., Leuvensesteenweg 325, 1932 Zaventem, Belgium,
Email: michel.ilzkovitz@spaceapplications.com
(3) Université Libre de Bruxelles, LNMB, Institute of Movement Science, Campus ERASME - CP 640, Route de Lennik 808, 1070 Anderlecht, Belgium, Email: gcheron@ulb.ac.be
(4) Fondazione Santa Lucia, Via Ardeatina 306, 00179 Roma, Italy,
Email: y.ivanenko@hsantalucia.it
(5) University of Twente, Faculty of Engineering Technology, Laboratory of Biomechanical Engineering, Postbus 217, 7500 AE Enschede, The Netherlands, Email: h.vanderkooij@utwente.nl
(6) University of Delft, Faculty of Mechanical Engineering, BioMechanical Engineering, Mekelweg 2, 2628 CD Delft, The Netherlands, Email: f.c.t.vanderhelm@tudelft.nl
(7) eemagine Medical Imaging Solutions GmbH, Gubener Str. 47, Fabrik, 10243 Berlin, Germany,
Email: frank.zanow@eemagine.com
(8) Ossur HF, Grjothals 5, 110 Reykjavik, Iceland,
Email: fthorsteinsson@ossur.com
ABSTRACT
MINDWALKER [1] is an EC FP7 funded project which aims at researching, designing and prototyping technologies for the seamless control of a lower limbs exoskeleton, relying on BNCI (Brain Neural Computer Interfaces) technologies. It promotes a non-invasive approach minimizing the cognitive load of the user for controlling the system.
This paper first introduces the MINDWALKER projects, its challenges and solutions being considered. Then the paper presents a perspective of how related technologies, which primary application field deals with the rehabilitation of spinal cord injured
References: 1. MINDWALKER project website. (2011). https://mindwalker-project.eu/ 2 4. Ivanenko Y.P., Poppele R.E., Lacquaniti F. (2006). Motor control programs and walking. In Neuroscientist 12(4):339-48, 2006. 5. L. Wang, S. Wang, H. van der Kooij, F. van der Helm. (2011). Spring Uses in Exoskeleton Actuation Design. Int. COnference on Rehabilitation Robotics (ICORR). [accepted] 6 7. B. Blankertz, G. Curio and K-R.Müller. (2002). Classifying Single Trial EEG:Towards Brain Computer Interfacing. Advances in Neural Information Processing Systems (NIPS 01), 14:157-164. 8. I. Iturrate, J.M. Antelis, A. Kubler and J. Minguez. (2009). A Noninvasive Brain-Actuated Wheelchair Based on a P300 Neurophysiological Protocol and Automated Navigation. In IEEE Transactions on Robotics, Vol. 25, No. 3, pp614-627. 9. Honda news release. (2009). http://world.honda.com/news/2009/c090331Brain-Machine-Interface-Technology/ 10 (2003). Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology 1:193-208, 2003. 12. Fitzsimmons N., Lebedev M.A., Peikon I., Nicolelis M.A.L. (2009). Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity. Frontiers in Neuroscience 3: 1-19, 2009. 13. M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford and A. B. Schwartz. (2008). Cortical control of a prosthetic arm for self-feeding. Nature 453, 1098-110. 14.Argo Medical Technologies ReWalk web site. (2011). http://www.argomedtec.com/ 15 16. Rex Bionics REX web site. (2011). http://www.rexbionics.co.nz/ 17 18. NASA Robonaut web page. (2011). http://robonaut.jsc.nasa.gov/default.asp 19 20. J. Mehling, P. Strawser, L. Bridgwater, W. Verdeyen, and R. Rovekamp. (2007). Centaur: NASA’s Mobile Humanoid Designed for Field Work. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2928–2933.