In 1791 Luigi Galvani discovered electrical activity in the nerves of the frogs that he was dissecting. He thought that electricity was of animal origin and could be found only in living tissues. A few years later, in 1800 Alessandro Volta discovered that electricity could be produced through inorganic means. In fact, by using small sheets of copper and zinc and cloth spacers soaked in an acid solution, he built a battery - the first apparatus capable of producing electricity. Naysayers were quick to predict that electricity would never serve a useful purpose. Obviously they were very wrong. Electricity has a central role in our lives and to this day Electrochemistry is a standard course of study.
While listening to lessons on Electrochemistry, many students may wonder why it was ever invented, if it was really ever necessary to invent it and if the world would be better off without it. With the small experiments that follow, we hope to make peace between these students and the study of Electrochemistry. These fun and simple experiments can teach the fundamental concepts of Electrochemistry without asking much of the student. As you will see, many of these demonstrations are easily adapted to various configurations and each can be done independently or as part of the full curriculum.
POROUS VASE - An actual porous vase made for the purpose may be difficult to acquire. It is used to prevent the quick mixing of various solutions, while permitting the exchange of ions. For our purposes you can adapt a terracotta pot of the type used in gardening simply by plugging the hole in the bottom with molten wax and allowing it to cool. Another even more economical answer lies in constructing a barrier of paper. As shown in figure 4, roll the paper to form a cylinder and glue it in place on the bottom of the main container using a silicone adhesive such that liquids cannot pass between the two areas defined by the paper. A barrier of just one sheet would