6 6
1
1 × 0.05 2
= 102.53
exp
0.5
δ (s) ds
= exp
0.5
(0.01s + 0.04) ds t=6 =
exp
0.01
t2 + 0.04t 2
= 1.49. t=0.5 3. 150 in 3 years accumulates to
3
150 exp
0
0.05 + 0.02s2 ds
= 150 exp
0.02
t3 + 0.05t 3
t=3
= 208.65 t=0 200 in 5 years accumulates to
3 5
200 exp
0
0.05 + 0.02s2 ds +
3 t=3
0.05 + 0.01s2 ds t3 + 0.05t 3 t=5 =
200 exp
0.02
t3 + 0.05t 3
exp t=0 0.01
= 426.23 t=3 250 in 8 years accumulates to
3 8
250 exp
0
0.05 + 0.02s2 ds +
3 t=3
0.05 + 0.01s2 ds t3 0.01 + 0.05t 3 t=8 =
250 exp
t3 0.02 + 0.05t 3
exp t=0 = 2248.73 t=3 To find the effective rate earned we have to solve 600 = 208.65 (1 + i)
−3
+ 426.23 (1 + i)
−5
+ 2248.73 (1 + i)
−8
Trying various values such as i = 0.1 and i = 0.2, we have LHS¡RHS. With i = 0.25, RHS=620 and with i = 0.26, RHS=596, so it is between 0.25 and 0.26 and closer to 0.26. Further investigation shows it is 0.258, i.e. 25.8% 4. Same exercise
1
5. We start with the present value
6 s 2 s
ρ (s) exp −
0 5 0
δ (u) du ds =
1 s
12 exp −
0 6
δ (u) du ds + s (10 + s) exp −
2 0 2
δ (u) du ds +
5 s
15 exp −
0
δ (u) du ds =
12 exp −
1 5 2 0
0.08 du ds + s (10 + s) exp −
2 6 2 0
0.08 du −
2 5
du 10 + u s ds +
15 exp −
5 2 0
0.08 du −
2 5
du − 10 + u
0.06 du ds =
5
12 exp (−0.08s) ds +
1 6 2
(10 + s) exp (−0.08 × 2) exp − ln 15 12
5
10 + s 12
ds +
15 exp (−0.08 × 2) exp − ln
5
exp (−0.06 (s − 5)) ds = 12 ds + 10 + s
12
exp (−0.08) − exp (−0.16) + 0.08
6
(10 + s) exp (−0.16)
2
12 exp (−0.16) exp (−0.06 (s − 5)) ds =
5
1 − exp (−0.06) exp (−0.08) − exp (−0.16) +12 (5 − 2) exp (−0.16)+12 exp (−0.16) = 51.25 0.08 0.06 The accumulated value is 12
2 5
51.25 exp
0
0.08 du +
2