Enzymes are organic catalysts that help to speed up the breakdown of a molecule, such as fructose. The enzyme helps a chemical reaction take place quickly so that the reaction happens properly. In order for that to happen the enzymes process by the lock and key model, the lock is the substrate and the enzyme is the key. The active sites are specific to a certain substrate of a molecule, so the enzymes only have one job to do. The shape of an enzyme is not changed or consumed during these reactions. However, without enzymes the reactions would take too long and would not breakdown properly.
A2. Deficiency in Aldolase B
In hereditary fructose intolerance there is a protein lacking that is needed to breakdown fructose. Aldolase B is the substance needed to breakdown fructose. Without the Aldolase B the body is not able to change glycogen into glucose that the body needs. When this happens an individual’s blood sugar can fall and substances will build up in the liver causing more health issues. With an absence of the enzyme Aldolase B, fructose cannot be broken down causing hereditary fructose intolerance. Symptoms can be severe, “these include severe abdominal pain, vomiting, and hypoglycemia following ingestion of fructose or other sugars metabolized through fructose-1-phosphate. Prolonged fructose ingestion in infants leads ultimately to hepatic and/or renal failure and death.” (Haldeman-Englert, 2011)
A4. Substrate
The specific substrate acted on by Aldolase B is fructose-1-phosphate (F1P). This then is converted into DHAP and glyceraldehyde. Once the conversion is finished the product can enter the glycolysis cycle to from ATP or energy used for the body. “In normal cellular conditions, the primary enzymatic activity of aldolase B is to cleave fructose diphosphate (FDP).” (Roth, 2012)
A5. Role of Aldolase B
Aldolase B is the substance needed to breakdown fructose. Its specific role is to speed up the