DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE
STAT2801 Life Contingencies
LN1: Chapter 3 (Actuarial Mathematics): Survival distributions
Age-at-death random variable
T0 – age-at-death (lifetime for newborn) random variable
To completely determine the distribution of T0 , we may use (for t ≥ 0),
(1) (cumulative) distribution function: F0 (t) = Pr(T0 ≤ t)
(2) survival function: s0 (t) = 1 − F0 (t) = Pr(T0 > t)
(3) probability density function: f0 (t) = F0 (t) =
(4) force of mortality: µ0 (t) =
d
F0 (t) dt f0 (t)
−s0 (t)
=
1 − F0 (t) s0 (t)
Requirements:
(1) For distribution function,
F(x)
1
(i) non-decreasing function
x
0
(ii) F0 (t) → 1 as t → ∞
(iii) F0 (t) = 0,
1
t≤0
Relations:
• F0 (t) =
t
0
f0 (y)dy
• F0 (t) = 1 − s0 (t)
• F0 (t) = 1 − exp{−
t
0
µ0 (y)dy}
(2) For survival function, s(x) 1
(i) non-increasing function
x
0
(ii) s0 (t) = 1 as t ≤ 0
(iii) s0 (t) → 0,
t→∞
Relations:
• s0 (t) =
∞ t f0 (y)dy
• s0 (t) = 1 − F0 (t)
• s0 (t) = exp{−
t
0
µ0 (y)dy}
(3) For probability density function,
(i) f0 (t) = 0,
t t) = 1 − t qx ,
t ≥ 0.
If t = 1, we write 1 qx and 1 px as qx and px , respectively. Note that t px
= Pr(Tx > t) = Pr(T0 − x > t|T0 > x) =
t qx
=1−
s0 (x + t)
.
s0 (x)
3
s0 (x + t)
Pr((T0 > x + t) ∩ (T0 > x))
=
,
Pr(T0 > x) s0 (x)
The probability that (x) dies between ages x + t and x + t + u is given by
|
|
|
x
x+t
x+t+u
t|u qx
= Pr(t < Tx < t + u)
= Pr(Tx ≤ t + u) − Pr(Tx ≤ t)
=
t+u qx
− t qx
= (1 − t+u px ) − (1 − t px )
t+u px =
= t px − t+u px ←
=
=
= t px − t px u px+t
=
=
If u = 1, we write
t px (1
s0 (x+t+u) s0 (x) s0 (x+t) s0 (x+t+u)
· s0 (x+t) s0 (x)
t px u px+t
t px u qx+t .
t|1 qx
− u px+t )
as t| qx
Example 1.
Suppose the survival function of the future lifetime of a newborn