2002)
Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World
A. K. Mohanty,1,2 M. Misra,1 and L. T. Drzal 1
Sustainability, industrial ecology, eco-efficiency, and green chemistry are guiding the development of the next generation of materials, products, and processes. Biodegradable plastics and bio-based polymer products based on annually renewable agricultural and biomass feedstock can form the basis for a portfolio of sustainable, eco-efficient products that can compete and capture markets currently dominated by products based exclusively on petroleum feedstock. Natural/Biofiber composites (Bio-Composites) are emerging as a viable alternative to glass fiber reinforced composites especially in automotive and building product applications. The combination of biofibers such as kenaf, hemp, flax, jute, henequen, pineapple leaf fiber, and sisal with polymer matrices from both nonrenewable and renewable resources to produce composite materials that are competitive with synthetic composites requires special attention, i.e., biofiber–matrix interface and novel processing. Natural fiber–reinforced polypropylene composites have attained commercial attraction in automotive industries. Natural fiber—polypropylene or natural fiber—polyester composites are not sufficiently eco-friendly because of the petroleum-based source and the nonbiodegradable nature of the polymer matrix. Using natural fibers with polymers based on renewable resources will allow many environmental issues to be solved. By embedding biofibers with renewable resource–based biopolymers such as cellulosic plastics; polylactides; starch plastics; polyhydroxyalkanoates (bacterial polyesters); and soy-based plastics, the so-called green bio-composites are continuously being developed.
KEY WORDS: Sustainable bio-composites; natural fiber; bioplastic; cellulosic plastic;
References: Mohanty, Misra, and Drzal 1. Plant/Crop-based Renewable Resources 2020, URL: http:// www.oit.doe.gov/agriculture/pdfs/vision2020.pdf 2. The Technology Roadmap for Plant/Crop-based Renewable Resources 2020, URL: http://www.oit.doe.gov/agriculture/pdfs/ ag25942.pdf 3. A. K. Mohanty, M. Misra, and G. Hinrichsen (2000) Macromol. Mater. Sci. Eng. 276/277, 1–24. 4. A. K. Mohanty, M. Misra, and L. T. Drzal (2001) Compos. Interf. 8, 313–343. 5. A. Scott (2000) Chem. Week. Sept. 13, 73. 6. T. U. Gerngross and S. C. Slater (2000) Scientific American, August, 37–41. 7. P. R. Gruber, D. Glassner, and E. Vink (2002) Polymer. Mater. Eng. 86, 337. 8. G. Scott and D. M. Wiles (2001) Biomacromolecules 2, published in web 08/03/2001. 9. A. K. Mohanty, M. Misra, and L. T. Drzal (2002) Polymer. Mater. Sci. Eng. 86, 341–342. 10. S. M. Thomas (2001) Mater. World 9, 24. 11. A. M. Rouchi (2000) Chem. Eng. News November 13, 29–32. 12. W. D. Brouwer (2000) SAMPE J 36, 18–23. 13. A. K. Mohanty, M. Misra, and L. T. Drzal (2001) American Society for Composites, 16th Annual Technical Conference September 9–12 at Blacksburg. Proc. Am. Soc. Composites M. W. Hyer and A. C. Loos (Eds.). 14. R. E. Drumright, P. R. Gruber, and D. E. Henton (2000) Adv. Mater. 12, 1841–1846. 15. C. Lanzillotta, A. Pipino, and D. Lips (2002) ANTEC 60, 2185– 2189. 16. Press Release October 2001: U.S. Department of Energy Awards Metaboloix, Inc. $7.4 Million to Expand the Development of Biobased Plastic Production in Plants. http://www.metabolix.com/ press9 01.html 17. A. K. Mohanty, M. A. Khan, S. Sahoo, and G. Hinrichsen (2000) J. Mater. Sci. 35, 2589–2595. 18. S. L. Wilkinson (2001) Chem. Eng. News January, 61. 19. Elion, G. R; 1993, U.S. Patent 5244 945. 20. D. Hokens, A. K. Mohanty, M. Misra, and L. T. Drzal (2001) Polymer Preprint Polymer Chem. Div. Am. Chem. Soc. 42, 71–72. 21. L. T. Drzal, A. K. Mohanty, P. Tummala, and M. Misra (2002), Polym. Mater. Sci. Eng. 87, 117–118. 22. G. I. Williams and R. P. Wool (2000) Appl. Compos. Mater. 7, 421–432. 23. P. Mapleston (1999) Mod. Plastics, April, 73–74. 24. “Grown to Fit the Part,” (1999) DaimlerChrysler High Tech. Rep. 82–85. 25. W. F. Powers (2000) Adv. Mater. Process May, 38–41. 26. “Green Door-Trim Panels Use PP and Natural Fibers,” (2000) Plastic Technol. November, 27. 27. J. L. Broge (2000) Automotive Eng. Int. October, p. 120. 28. Carl Eckert (Kline & Co, NJ); October 4–6, 2000, Memphis, TN, USA. 29. L. T. Drzal, A. K. Mohanty, and M. Misra (2001) Polymer Preprint Polymer Chem. Div. Am. Chem. Soc. 42, 31–32. 30. A. K. Mohanty, L. T. Drzal, and M. Misra (2002) J. Adh. Sci. Technol. 16, 999–1015. 31. A. K. Mohanty, L. T. Drzal, and M. Misra (2002) in A. V. Pocius and J. G. Dillards (Eds.), Proc. 25th Annu. Meet. Adh. Soc.; 2nd World Congr. Adh. Rel. Phenomenon (WCARP-II), February 10–14, Orlando, Florida, pp. 328–330.