BRIEF COMMUNICATION
Synthesis and antibacterial activity of silver nanoparticles with different sizes
´ ´ ˜´ ˜ G. A. Martınez-Castanon Æ N. Nino-Martınez Æ ´ ´ F. Martınez-Gutierrez Æ J. R. Martınez-Mendoza Æ Facundo Ruiz
Received: 29 January 2008 / Accepted: 22 May 2008 / Published online: 2 July 2008 Ó Springer Science+Business Media B.V. 2008
Abstract Silver nanoparticles with different sizes (7, 29, and 89 nm mean values) were synthesized using gallic acid in an aqueous chemical reduction method. The nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and ultraviolet–visible (UV–Vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopies studies (TEM) we observed that silver nanoparticles have spherical (7 and 29 nm) and
pseudospherical shape (89 nm) with a narrow size distribution. The sizes of the silver nanoparticles were controlled by varying some experimental conditions. It was found that the antibacterial activity of the nanoparticles varies when their size diminishes. Keywords Antibacterial-activity Á Ag-nanoparticles Á Synthesis Á Nanobiotechnology Á EHS
´ ˜´ G. A. Martınez-Castanon (&) ´ Maestria en Ciencias Odontologicas, Facultad de ´ Estomatologıa, UASLP, Av. Manuel Nava 2, Zona Universitaria, San Luis Potosi, SLP, Mexico e-mail: mtzcastanon@fciencias.uaslp.mx ´ ˜ N. Nino-Martınez Instituto de Metalurgia, UASLP, Av. Sierra Leona ´ No. 550, Col. Lomas 2a. Seccion, San Luis Potosi, SLP, Mexico ´ ´ ˜ N. Nino-Martınez Á J. R. Martınez-Mendoza Á F. Ruiz ´ ´ Facultad de Ciencias, UASLP, Alvaro Obregon 64, C.P. 78000 San Luis Potosi, SLP, Mexico ´ F. Martınez-Gutierrez ´ Facultad de Ciencias
References: Holt KB, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44:13214–13223 Jana NR, Sau TK, Pal T (1999) Growing small silver particle as redox catalyst. J Phys Chem B 103:115–121 Jeong SH, Hwnag YH, Yi SC (2005) Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J Mater Sci 40:5413–5418 Kim JS, Kuk E, Yu KN, Kim J, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C, Kim Y, Lee Y, Jeong DH, Cho M (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101 Lee D, Cohen RE, Rubner MF (2005) Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21:9651–9659 Li P, Li J, Wu C, Wu Q, Li J (2005) Synergistic antibacterial effects of b-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917 Li Z, Lee D, Sheng X, Cohen RE, Rubner MF (2006) Twolevel antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 22:9820–9823 Lok CM, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924 123 1348 Lutterotti L, Matthies S, Wenk HR (1999) In: Proceedings of the twelfth international conference on textures of materials (ICOTOM-12), vol. 1. Montreal, Canada, p 1599 MacKeen PC, Person S, Warner SC, Snipes W, Stevens SE Jr (1987) Silver-coated nylon fiber as an antibacterial agent. Antimicrob Agents Chemother 31:93–99 Manna A, Imae T, Aoi K, Okada M, Yogo T (2001) Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles. Chem Mater 13:1674–1681 Marini M, De Niederhausern N, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F (2007) Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules 8:1246–1254 ´ ´ ˜´ Martınez-Castanon GA, Martınez JR, Ortega-Zarzosa G, ´ Facundo R, Sanchez-Loredo MG (2005) Optical absorption of Ag particles dispersed in a SiO2 amorphous matrix. J Sol-Gel Sci Technol 36:137–145 Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, ´ Ramırez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353 Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the J Nanopart Res (2008) 10:1343–1348 nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720 ´ˇ ´ ´ˇ ˇ ˇ ´ ´ ´ Panacek A, Kvıtek L, Prucek R, Kolar M, Vecerova R, Pizurova ˇ N, Sharma VK, Tat’jana N, Zboril Z (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16243 Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103 ¨ Sonnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J (2002) Plasmon resonances in large noble-metal clusters. New J Phys 4:931–938 Thiel J, Pakstis L, Buzby S, Raffi M, Ni C, Pochan DJ, Shah SI (2007) Antibacterial properties of silver-doped titania. Small 3:799–803 Wang W, Chen Q, Jiang C, Yang D, Liu X, Xu S (2007) Onestep synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone). Colloids Surf A Physicochem Eng Asp 301:73–79 Zhang L, Yu JC, Yip HY, Li Q, Kwong KW, Xu A, Wong PK (2003) Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir 19: 10372–10380 123