Preview

The History of Imaginary Numbers

Good Essays
Open Document
Open Document
641 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
The History of Imaginary Numbers
Once upon a time, in the imaginary land of numbers… Yes, numbers! I bet that would’ve never come to mind. Which brings me to the question: Who thought of them and why? In 50 A.D., Heron of Alexandria studied the volume of an impossible part of a pyramid. He had to find √(81-114) which, back then, was insolvable. Heron soon gave up. For a very long time, negative radicals were simply deemed “impossible”. In the 1500’s, some speculation began to arise again over the square root of negative numbers. Formulas for solving 3rd and 4th degree polynomial equations were discovered and people realized that some work with square roots of negative numbers would occasionally be required. Naturally, they didn’t want to work with that, so they usually didn’t. Finally, in 1545, the first major work with imaginary numbers occurred. In 1545, Girolamo Carding wrote a book titled Ars Magna. He solved the equation x(10-x)=40, finding the answer to be 5 plus or minus √-15. Although he found that this was the answer, he greatly disliked imaginary numbers. He said that work with them would be, “as subtle as it would be useless”, and referred to working with them as “mental torture.” For a while, most people agreed with him. Later, in 1637, Rene Descartes came up with the standard form for complex numbers, which is a+bi. However, he didn’t like complex numbers either. He assumed that if they were involved, you couldn’t solve the problem. Lastly, he came up with the term “imaginary”, although he meant it to be negative. Issac Newton agreed with Descartes, and Albert Girad even went as far as to call these, “solutions impossible”. Although these people didn’t enjoy the thought of imaginary numbers, they couldn’t stop other mathematicians from believing that i might exist. (The History of Complex Numbers)

Rafael Bombelli was a firm believer in imaginary numbers. However, since he couldn’t do anything with them people doubted him. He did understand that i times i should

You May Also Find These Documents Helpful

  • Good Essays

    Smith, D. E. (1951). History of Mathematics: General Survey of the History of Elementary Mathematics (Vol. 1). New York: Dover Publications.…

    • 420 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Maria Ascher's *Mathematics Elsewhere,* identifies mathematical ideas that are present all over the world, and is "intended as another step toward a global and humanistic history of mathematics." (Ascher IV) This important volume clarifies how many universal mathematical concepts, both simple and complex, are used and understood by countless cultures worldwide, regardless of differences in geography, language, and era. By studying and widening the scope of the history and breadth of mathematical thought, Ascher argues that "we are supplying complexity and texture... [and] in short, enlarging our understanding of the variety of human expressions and human usages associated with the same basic ideas." (2)…

    • 900 Words
    • 4 Pages
    Good Essays
  • Good Essays

    From the field of mathematics came Al-Kwarizmi's textbook on Algebra (document 4), which was used throughout Europe and beyond; and also Arabic numerals which were adopted from the Indians and used in a place-value system (document 4). These advancements were made possible because of the knowledge of both Indian and Greek mathematics, which were studied by Muslim scholars before the creation of any Islamic…

    • 551 Words
    • 3 Pages
    Good Essays
  • Good Essays

    As a child, Georg Cantor heard voices, which he believed was God, calling him into mathematics. Starting with Galileo, many mathematics could not understand the concept of infinity and why it is true; they decided to accept it, but not truly understand it. However, in the nineteenth century, Cantor forced a revision of nearly all…

    • 774 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Caminos Peligrosos

    • 629 Words
    • 3 Pages

    Finding pi came about through the desire to “find not the ratio of the particular circle you were interested in using, but a universal ratio that would hold for all circles for all time”. Pi, or the concept of pi, some may say has been discussed in the past, as far back as biblical times. It is understood to today however, that one of the closest approximations to pi remains 22/7, which is only .04 percent off from pi. The Greeks reinvented the way in looking at pi, by ironically finding the exact number. They eventually did determine pi, but being infinite, they had to bear through the “tedium of working with polygons of large numbers of sides.” This meant that they created so many polygons with in each other, trying to form a circle out of them, however as we know today, that would be an asymptote, for they might come infinitesimally close, and never reach the real value. In the sixteenth century, the fraction 355/ 113 was first used as an approximation of pi being only .000008 percent off. This very small fraction however was not exact, so the fight to find pi kept on. Francois Vieta, a French mathematician of the sixteenth century was the next to take up the challenge. He is one of the most famous math mathematician even being called the “father of algebra” for he was the one who brought variables in to the developing equation of math. He performed the algebraic equivalence of Archimedes’…

    • 629 Words
    • 3 Pages
    Satisfactory Essays
  • Satisfactory Essays

    BEA109_Skills Review PART 2

    • 2309 Words
    • 18 Pages

    – The integers give us answers to questions like: ‘What can I add to 5 to get 3?’…

    • 2309 Words
    • 18 Pages
    Satisfactory Essays
  • Powerful Essays

    The Pythagoreans “believed that [the principles of mathematics] are the principles of all things that are”. Further, “number is the first of these principles”.[1] “’The numerals of Pythagoras,’ says Porphyry, who lived about 300 A. D., ‘were hieroglyphic symbols, by means whereof he explained all ideas concerning the nature of things…’”[2] In modern time, we can see clearly the application of mathematical principles in our daily lives. For example, the computer that I am using now to type this paper operates on number. Each letter and symbol on this page has a corresponding numerical value inside the computer. The image I see on the computer screen consists of millions of tiny pixels each displaying a specific color generated by its corresponding numerical value. Because letters, symbols, and images can be “enumerated” in a computer, one can manipulate these numerical values to simulate reality via mathematical principles. Thus, we can see reality based on its numerical representation.…

    • 1616 Words
    • 7 Pages
    Powerful Essays
  • Good Essays

    The ethics theories table is a discussion of several ethical theories. In this paper I will discuss the duty-based ethics, goal-based ethics, right-based ethics, and human nature ethics. I will define each theory and match the real-world examples and establish workplace examples. Ethics Theories Table Real-World Examples:…

    • 674 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Mathematics and Mayans

    • 1027 Words
    • 5 Pages

    Ancient Greek mathematics has been developed since the early seventh century B.C. which could also be called the period during the Hellenistic Mathematics. Some of the greatest Ancient Greek mathematicians were Pythagoras, Aristotle, Anaxagoras, Euclid, Archimedes, Thales, and Aristarchus. These Greek mathematicians were big on the development of geometry which is a subdivision of math that focuses on shapes, size, and the relativity of space. Although their number system was based on letters of the alphabet and used units of five and ten, they therefore were not big on the processes of Algebra. However the Greeks became the masters of calculating solutions concerning volume, lengths and areas using geometric methods and theorems to solve algebraic equations. Despite contributions to modern day arithmetic such as the Pythagorean Theorem and Euclidian Geometry the Greeks were missing one essential part of math, one number that modern day civilization mathematics would not be able to function without. The Mayans included this number in their mathematic…

    • 1027 Words
    • 5 Pages
    Good Essays
  • Good Essays

    Calculus Sketch

    • 454 Words
    • 2 Pages

    When calculus was invented, has always been a question in Math. The first signs of calculus were done by Greek mathematicians. Zeno of Elea of about 450 B.C. gave a number of problems which were based on the infinite. His argument was that motion is impossible. Other Greek mathematicians that contributed to the method of exhaustion are Leucippus, Democritus and Antiphon. The method of exhaustion is so called because one thinks of the areas measured expanding so that they account for more and more of the required area. Archimedes made one of the greatest contributions of the Greek. One advancement he made was to show that the area of a segment of a parabola is 4/3 the area of a triangle with the same base and vertex and 2/3 of the area of the circumscribed parallelogram. Archimedes also “invented” the volume and surface area of a sphere, the volume and area of a cone, the surface area of an ellipse, and the volume of any segment of a parabolic. No progress or advancements were made in calculus until the 17th century. One great mathematician that was born in Barsa, Persia is Abu Ali-Hasan ibn al-Haytham. He integrated a fourth-degree polynomial. In the 3rd century AD Liu Hui of China used the method of exhaustion in order to fin the area of a circle. In the 5th century AD Zu Chongzhi also used it to find the volume of a sphere. In the 12th century Bhaskara II of India developed an early derivative representing infinitesimal change and described an early form of “Rolle’s theorem”. Seki Kowa expanded the method of exhaustion in the early 17th century in Japan. In AD 1668 James Gregory provided a special case of the second fundamental theorem of calculus.…

    • 454 Words
    • 2 Pages
    Good Essays
  • Better Essays

    In this time, “Europe was in deep slumber” (crest of the peacock). The transference of this knowledge to European colonies resulted in the production of some of the most influential mathematical knowledge. From a political point of view, mathematical knowledge can be considered as power. The mathematisation of modern life and society has been growing exponentially, so much so that the majority of human movements are conceptualised and controlled numerically. A strong education system has become the key to the quantified thought processes that are required in modern citizens.…

    • 1864 Words
    • 8 Pages
    Better Essays
  • Good Essays

    Montessori Math Rationale

    • 1121 Words
    • 4 Pages

    Numbers like the alphabet, not found in nature, have been an invention of man as a need to understand each other, to progress, for evolution and survival. Humans, as we know, were born with the innate ability to create a language to express the abstract aspects that we have formed of the things around us and their…

    • 1121 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Hinduism, Buddhism, Jainism, and Sikhism borne in India and followed by 25% of the world's population…

    • 772 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    Hum Project

    • 872 Words
    • 4 Pages

    At one point, the Greeks strongly believed that the numeral one was a unit not a number. Mathematics has evolved on a large scale to suit our lives today. Mathematics has also branched out to different sub-sections such as calculus, geometry, trigonometry and algebra. Who was Pythagoras?…

    • 872 Words
    • 4 Pages
    Powerful Essays
  • Good Essays

    The Real Number System

    • 1751 Words
    • 8 Pages

    The real number system evolved over time by expanding the notion of what we mean by the word “number.” At first, “number” meant something you could count, like how many sheep a farmer owns. These are called the natural numbers, or sometimes the counting numbers.…

    • 1751 Words
    • 8 Pages
    Good Essays

Related Topics