Summary:
There are four parts in this big experiment, including deflection of a cantilever, deflection of a simply supported beam, the shape of a deflected beam, and circular bending. In these four parts, a same set of laboratory instrument and apparatus is used, concluding a bracket, a moveable digital dial test indicator, U-section channel, moveable knife-edge, and three material beams: brass, aluminum, and steel. The experiment methods, and fixed point to the beam are the differences between these four small experiments. The aim of this experiment is to improve the ability to use the precision engineering components like moveable digital dial test indicator, also understand the formula: Deflection= WL^3/3EI.
To explain this formula: W is load, its unit is N, L is distance from support to position of loading (m), E is Young’s modulus for cantilever material, and its unit is Nm^-2, I is the second moment of area of the cantilever, its unit is m^4. In addition, the experiment safety is very important.
Objective:
(1) Operation techniques. In this experiment, measuring data is very important, because of comparing the actual deflection to theoretical deflection. Every step of this experiment should be precise. To obtain the correct data, you must be sure that the all components are secure and fastenings are sufficiently tight. Also position the equipment safely. Be sure it is on a solid, level surface. (2) Analyses experiment. As known, there are four parts in this experiment. The different structure of the experiment equipment affects the different results. So it is necessary to think about how the structure affects the experiment. (3) Application of controlling vitiates method. In this experiment, three material beams are used: brass, aluminum, and steel. Different material has its own Young’s modulus.
Introduction & Theory:
As known, every material has its own disutility, because of the