Under the Tyndall effect, the longer-wavelength light is more transmitted while the shorter-wavelength light is more reflected via scattering. An analogy to this wavelength dependency is that longwave electromagnetic waves such as radio waves are able to pass through the walls of buildings, while shortwave electromagnetic waves such as light waves are stopped and reflected by the walls. The Tyndall effect is seen when light-scattering particulate-matter is dispersed in an otherwise-light-transmitting medium, when the cross-section of an individual particulate is the range of roughly between 40 and 900 nanometers, i.e., somewhat below or near the wavelength of visible light (400–750 nanometers).
It is particularly applicable to colloidal mixtures and suspensions; for example, the Tyndall effect is used commercially to determine the size and density of particles in aerosols and other colloidal matter (see ultramicroscope and turbidimeter).
Difference from Rayleigh scatterin
Rayleigh scattering is defined by a mathematical formula that requires the light-scattering particles to be far smaller than the wavelength of the light. For a dispersion of particles to qualify for the Rayleigh formula, the particle sizes need to be below roughly 40 nanometres; and the particles may be individual molecules. Colloidal particles are bigger, and are in the rough vicinity of the size of a wavelength of light. Tyndall