the aromatic samples hold a single distinct discrepancy. They all consist of different functional groups.
As mentioned in previous lab reports, functional groups are the chemical components on an organic molecule. These particular components of the molecules institute the chemical properties of the molecule. Furthermore, the functional groups have fundamental role during the electrophilic aromatic substitution. It impinges on the reaction in two ways: the rate of the reaction and the directional control. In relation to this specific lab, we will zero in on the directional control of aromatic substances (nitration of bromobenzene).
The directional control of benzene is inclined by the functional groups and the dissimilarity in the functional groups will cause the electrophile of the aromatic substance to react in a specific manner. As on example, the reaction in our lab is a mono-substitution reaction. In simpler words, one electrophile group is substituted for a proton of the benzene ring. And because of the specificity of aromatic substances, the electrophile is capable of binding to certain areas of the ring. In the monos-substitution reaction, the electrophile has the potentiality to bind to three areas.
With these different areas, the reaction can potentially form three types of products: ortho, para, and meta. IN the ortho products, the electrophile is one carbon away from the functional group. Para, on the other hand, is two carbons from the functional group. And finally the Meta product, the electrophile is three carbons from the functional group. Based on the presence of different functional groups, the amounts of the formation of these products will vary.