Yogurt is made by lactic acid fermentation. The main (starter) cultures in yogurt are Lactobacillus bulgaricus and Streptococcus thermophilus. The function of the starter cultures is to ferment lactose (milk sugar) to produce lactic acid. The increase in lactic acid decreases pH and causes the milk to clot, or form the soft gel that is characteristic of yogurt. The fermentation of lactose also produces the flavor compounds that are characteristic of yogurt. Lactobacillus bulgaricus and Streptococcus thermophilus are the only 2 cultures required by law (CFR) to be present in yogurt. Other bacterial cultures, such as Lactobacillus acidophilus, Lactobacillus subsp. casei, and Bifido-bacteria may be added to yogurt as probiotic cultures. Probiotic cultures benefit human health by improving lactose digestion, gastrointestinal function, and stimulating the immune system. Lactic acid fermentation is the simplest type of fermentation. Basically, it is a redox reaction. In anaerobic conditions, the cell’s primary mechanism of ATP production is glycolysis. Glycolysis reduces – that is, transfers electrons to – NAD+, forming NADH. However, there is only a limited supply of NAD+ available in a cell. For glycolysis to continue, NADH must be oxidized – that is, have electrons taken away – to regenerate the NAD+. This is usually done through an electron transport chain in a process called oxidative phosphorylation. However, this mechanism is not available without oxygen. Instead, the NADH donates its extra electrons to the pyruvate molecules formed during glycolysis. Since the NADH has lost electrons, NAD+ regenerates and is again available for glycolysis. Lactic acid, for which this process is named, is formed by the reduction of pyruvate. The total fermentation process to make yogurt is fairly simply. The milk mixture is pasteurized at 185°F (85°C) for 30 minutes or at 203°F (95°C) for 10 minutes. A high heat treatment is used to denature the
Yogurt is made by lactic acid fermentation. The main (starter) cultures in yogurt are Lactobacillus bulgaricus and Streptococcus thermophilus. The function of the starter cultures is to ferment lactose (milk sugar) to produce lactic acid. The increase in lactic acid decreases pH and causes the milk to clot, or form the soft gel that is characteristic of yogurt. The fermentation of lactose also produces the flavor compounds that are characteristic of yogurt. Lactobacillus bulgaricus and Streptococcus thermophilus are the only 2 cultures required by law (CFR) to be present in yogurt. Other bacterial cultures, such as Lactobacillus acidophilus, Lactobacillus subsp. casei, and Bifido-bacteria may be added to yogurt as probiotic cultures. Probiotic cultures benefit human health by improving lactose digestion, gastrointestinal function, and stimulating the immune system. Lactic acid fermentation is the simplest type of fermentation. Basically, it is a redox reaction. In anaerobic conditions, the cell’s primary mechanism of ATP production is glycolysis. Glycolysis reduces – that is, transfers electrons to – NAD+, forming NADH. However, there is only a limited supply of NAD+ available in a cell. For glycolysis to continue, NADH must be oxidized – that is, have electrons taken away – to regenerate the NAD+. This is usually done through an electron transport chain in a process called oxidative phosphorylation. However, this mechanism is not available without oxygen. Instead, the NADH donates its extra electrons to the pyruvate molecules formed during glycolysis. Since the NADH has lost electrons, NAD+ regenerates and is again available for glycolysis. Lactic acid, for which this process is named, is formed by the reduction of pyruvate. The total fermentation process to make yogurt is fairly simply. The milk mixture is pasteurized at 185°F (85°C) for 30 minutes or at 203°F (95°C) for 10 minutes. A high heat treatment is used to denature the