Title no. 106-S64
TECHNICAL PAPER
A Practical Equation for Elastic Modulus of Concrete by Takafumi Noguchi, Fuminori Tomosawa, Kamran M. Nemati, Bernardino M. Chiaia, and Alessandro P. Fantilli
Many empirical equations for predicting the modulus of elasticity as a function of compressive strength can be found in the current literature. They are obtained from experiments performed on a restricted number of concrete specimens subjected to uniaxial compression. Thus, the existing equations cannot cover the entire experimental data. This is due to the fact that mechanical properties of concrete are highly dependent on the types and proportions of binders and aggregates. To introduce a new reliable formula, more than 3000 data sets, obtained by many investigators using various materials, have been collected and analyzed statistically. The compressive strengths of the considered concretes range from 40 to 160 MPa (5.8 to 23.2 ksi). As a result, a practical and universal equation, which also takes into consideration the types of coarse aggregates and mineral admixtures, is proposed.
Keywords: analysis; coarse aggregates; compressive strength; highstrength concrete; modulus of elasticity; normal-strength concrete; watercement ratio.
subjected to uniaxial compression are currently used for evaluating E. From these tests, the current building codes propose more or less similar empirical formulas for the estimation of elastic modulus. Because they are directed to designers, the possible equations need to be formulated as functions of the parameters known at the design stage.9 Thus, for both normal-strength (NSC) and high-strength (HSC) concrete, the Comité Euro-International du Béton and the Fédération Internationale de la Précontrainte (CEB-FIP) Model Code10 and Eurocode 211 link the elastic modulus E to the compressive strength σB according to σB 3 E = 22,000 ⎛ ----- ⎞ ⎝ 10⎠ σB 3 E = 3191 ⎛ --------- ⎞ ⎝ 1.45⎠
1 -1 --
(1a)