This experiment is to study the effect of temperature on the rate of reaction between potassium permanganate with oxalic acid. We used 2cm3 of 0.02M potassium permanganate and 4cm3 of 1M sulphuric acid into a test tube. In another test tube, we placed 2cm3 of oxalic acid. We placed the test tubes in a water bath at 40, 45, 50, 55 and 60oC respectively. When the solutions have attained these temperatures pour the oxalic acid into the acidified permanganate solution and recorded the time taken for the permanganate to decolorize. At 400C , the time taken for the permanganate to decolorize is 66 seconds. At 600C, the time taken for the permanganate to decolorize is 10s. The higher temperature of the reaction, the faster the time taken for the permanganate to decolorize. This is because the higher temperature implies higher average kinetic energy of molecules and more collisions per unit time. The rate of effective collision increases, the rate of reaction increases. As a result, the time taken for reaction decreases when temperature increasing. The graph shows that 1/T is decreasing when In 1/t is increasing. When the value of 1/T is bigger, the value of In 1/t will be smaller. In opposite situation, the value of 1/T smaller, the value of In 1/t will be bigger. Activation energy is the minimum energy is needed by particle to form product. It can calculated by using Arrhenius equation, k = Ae-Ea/RT .
Introduction
The purpose of this experiment is to determine the rate activation energy of the reaction between potassium permanganate with oxalic acid. Usually, an increase in temperature is accompanied by an increase in the reaction rate. Temperature is a measure of the kinetic energy of a system. The higher temperature implies higher average kinetic energy of molecules and more collisions per unit time. The rate of effective collision increases, the rate of
(2013, 07). Ghost Mun. StudyMode.com. Retrieved 07, 2013, from