3.1 The Dichotomy
The first asserts the non-existence of motion on the ground that that which is in locomotion must arrive at the half-way stage before it arrives at the goal. (Aristotle Physics, 239b11)
This paradox is known as the ‘dichotomy’ because it involves repeated division into two (like the second paradox of plurality). Like the other paradoxes of motion we have it from Aristotle, who sought to refute it.
Suppose a very fast runner—such as mythical Atalanta—needs to run for the bus. Clearly before she reaches the bus stop she must run half-way, as Aristotle says. There's no problem there; supposing a constant motion it will take her 1/2 the time to run half-way there and 1/2 the time to run the rest of the way. Now she must also run half-way to the half-way point—i.e., a 1/4 of the total distance—before she reaches the half-way point, but again she is left with a finite number of finite lengths to run, and plenty of time to do it. And before she reaches 1/4 of the way she must reach 1/2 of 1/4 = 1/8 of the way; and before that a 1/16; and so on. There is no problem at any finite point in this series, but what if the halving is carried out infinitely many times? The resulting series contains no first distance to run, for any possible first distance could be divided in half, and hence would not be first after all. However it does contain a final distance, namely 1/2 of the way; and a penultimate distance, 1/4 of the way; and a third to last distance, 1/8 of the way; and so on. Thus the series of distances that Atalanta is required to run is: …, then 1/16 of the way, then 1/8 of the way, then 1/4 of the way, and finally 1/2 of the way (of course we are not suggesting that she stops at the end of each segment and then starts running at the beginning of the next—we are thinking of her continuous run being composed of such parts). And now there is a problem,