Celsius = 10 x (depth) + 20 (Celsius temperature at depth in km) Farhrenheit = 1.8 x (Celsius) + 32 8. The Pythagorean Theorem states that the sum of the squares of the sides of a right triangle is equal to the square of the hypotenuse. For example‚ if two sides of a right triangle have lengths 3 and 4‚ then the hypotenuse must have a length of 5. The integers 3‚ 4‚ and 5 together form a Pythagorean triple. There is an infinite number of such triples. Given two positive integers‚
Premium Pythagorean theorem Real number Integer
Angle measurement The concept of angle The concept of angle is one of the most important concepts in geometry. The concepts of equality‚ sums‚ and differences of angles are important and used throughout geometry‚ but the subject of trigonometry is based on the measurement of angles. There are two commonly used units of measurement for angles. The more familiar unit of measurement is that of degrees. A circle is divided into 360 equal degrees‚ so that a right angle is 90°. For the time being
Premium Angle Triangle
1. Types of Reasoning * Inductive Reasoning – * general conclusion based on a limited collection of specific observations * educated guesses * Primary flaw – we cannot be sure the conclusion is always correct * Counterexamples -- show a conclusion reached through inductive reasoning is not true * Deductive Reasoning – * making a specific conclusion based on a collection of generally accepted assumptions. * There are no counterexamples
Premium Angle Triangle
to one of its sides. • p = ns • n = number of sides • s = length of each side IV. Area of a Regular Polygon Area = ½ (p • a) p = perimeter a = apothem V. Square • Area of a square = a*a a = length of side VI. Triangle • Area of a triangle= ½ b*h b = base h = vertical height VII. Parallelogram • Area of a parallelogram = b *h b = base h = vertical height VIII. Trapezoid • Area of a trapezoid = ½ (a + b) • h a = 1st base b = 2nd base h = vertical
Premium Triangle
File: GeomB 2011 Answers 8.10.11 No Calculators: Updated: August 10‚ 2011 A concave polygon looks sort of like a vertex has been ’pushed in’ towards the inside of the polygon. A convex polygon has all the vertices of the polygon pointing outwards‚ away from the interior of the shape. Think of it as a ’bulging’ polygon. A regular polygon is a polygon which is equiangular (all angles are congruent) and equilateral (all sides have the same length). Regular polygons may be convex or star. (5
Premium Rectangle Triangle Area
= JK A is the midpoint of IK . Name: ________________________ ____ ID: A 9. Find the center of the circle that you can circumscribe about the triangle. a. 1 (− ‚ –4) 2 b. (–3‚ −2) c. 1 (− ‚ −2) 2 ____ 10. Where can the bisectors of the angles of an obtuse triangle intersect? I. inside the triangle II. on the triangle III. outside the triangle a. I only b. III only c. I or III only ____ 11. In ∆ACE‚ G is the centroid and BE = 12. Find BG and GE. a. b. BG = 4‚ GE = 8 BG = 3‚ GE = 9 c.
Premium Triangle Pythagorean theorem
Merriam-Webster‚ is ’the study of the properties of triangles and trigonometric functions and of their applications’. Trigonometry is one of the branches of mathematical and geometrical reasoning that studies triangles‚ particularly right triangles. Trigonometry uses the fact that the ratios of pairs of sides of triangles are functions of the angles. The basis for measuring triangles is the right-angled triangle. The term trigonometry means the measurement of triangles. Trigonometry is a branch of mathematics
Premium Mathematics Law of cosines Triangle
NAME ______________________________________________ DATE 1 ____________ PERIOD _____ Reading to Learn Mathematics This is an alphabetical list of the key vocabulary terms you will learn in Chapter 1. As you study the chapter‚ complete each term’s definition or description. Remember to add the page number where you found the term. Add these pages to your Geometry Study Notebook to review vocabulary at the end of the chapter. Vocabulary Term Found on Page Definition/Description/Example
Premium Triangle Angle
_______ a) Sector b) Segment c) Semicircle d) Triangle _____ 2. The line that intersects the circle at two distinct points is called _____ a) Tangent b) Segment c) Secant d) Ray _____ 3. The angle whose vertex lies on the circle and whose sides are two chords is said to be ____ a) Central b) Circumscribed c) Dihedral d) Inscribed _____ 4. The region bounded by two concentric circles is ______ a) An annulus b) A sector c) A segment d) A right triangle _____ 5. A dodecagon is a polygon of ____ sides
Premium Regular polygon Triangle Geometry
PST201F/101/3/2015 Tutorial letter 101/3/2015 MATHEMATICS AND MATHEMATICS TEACHING PST201F Semester 1 and 2 Department Mathematics Education IMPORTANT INFORMATION: This tutorial letter contains important information about your module. BAR CODE Learn without limits UNISA 2 CONTENT 1 INTRODUCTION .............................................................................................................................................. 3 2 PURPOSE OF AND OUTCOMES FOR THE MODULE ......
Premium Number Prime number Natural number