9.1.1 Define oxidation and reduction in terms of electron loss and gain. Oxidation: the loss of electrons Reduction: the gain of electrons 9.1.2 Deduce the oxidation number of an element in a compound. Always determine elements that never change their oxidation number then ensure the charge of whole molecule is right. N.B. Atoms in elemental state have oxidation numbers of 0 9.1.3 State the names of compounds using oxidation numbers. Example of this in iron‚ can be iron(II) or iron(III) 9.1.4 Deduce
Premium Electrochemistry
moles/1000 mL = .0005 moles/10 mL = moles of hydroxylammonium chloride Ratio of Fe+2 to NH3OH+ = 2:1 2e- + 2Fe+3 --> 2Fe+2 so transfer of 2 electrons NH3OH+ --> something + 2e- Oxidation number of N in NH3OH+ is -1‚ therefore the oxidation number for N on the product side must be +1 because it gains 2 electrons. N2O has an oxidation number of +1 for N‚ so that would work. Data:Equation 1: NH3OH+ + 2Fe+3 --> something + 2Fe+2 Equation 2: 8H+ + 5Fe+2 + MnO4- --> 5Fe+3 + Mn+2 + 4H2O Equation 3: 6H+ +
Free Manganese Mole Potassium permanganate
solution‚ MnO4- ion undergoes reduction to Mn2+ this is the equation: 8H+(aq) + Mno4-(aq) + 5e- Mn2+(aq) + 4H2O Since the KMnO4 – ion is violet and the Mn2+ ion is nearly colorless‚ the end point titrations using KMnO4 as the titrant can be taken as the first pink color that appears in the solution (and stays without disappearing). The titration which involves the oxidation of Fe2+ ion to Fe3+ by permanganate ion‚ is carried out in sulfuric acid to prevent air-oxidation of Fe2+ (we can them determine
Premium Potassium permanganate Oxidizing agent Manganese
INTRODUCTION For this experiment we studied an oxidation-reduction reaction of magnesium and hydrochloric acid solution. We compared the experimental measured amount of a product and the amount predicted by the theoretical calculation of a balanced equation: Mg (s) + 2HCl (aq) → MgCl2 (aq) + H2 (g) PROCEDURE First we obtained a strip of pre-cut magnesium ribbon‚ cleaned it with steel wool to remove any signs of oxidation from the strip (which would alter our results)‚ and then weighed it (individual
Premium Chlorine Hydrochloric acid Hydrogen
Oxidation of an Alcohol: Oxidizing Methoxybenzyl Alcohol to Methoxybenzaldehyde Using Phase-Transfer Catalysis PURPOSE OF THE EXPERIMENT Oxidize methoxybenzyl alcohol to methoxybenzaldehyde‚ using sodium hypochlorite as the oxidizing agent and tetrabutylammonium hydrogen sulfate as the phase-transfer catalyst. Monitor the progress of the reaction by thin-layer chromatography. BACKGROUND REQUIRED You should be familiar with extraction‚ evaporation‚ and thin-layer chromatography techniques
Premium Alcohol Oxidizing agent Electrochemistry
Week 10: Oxidation and Reduction Reactions: The Reactions of Copper Data: Part I: Preparing a solution of copper (II) nitrate Initial mass of copper wire: .520g Mass of copper wire after vigorously scouring: .518g Observations of Copper (II) ribbon mixed with HNO3: Solution turned green. Thick brown gas formed. Copper (II) bubbled vigorously. Cu (II) dissolved‚ solution appeared green/blue. After the addition of H2O a blue crusty precipitate formed. Part II: Synthesis of solid copper
Premium Copper Sulfuric acid Zinc
8.07 Work File: Oxidation Reduction Reactions 1. What is the difference between an oxidizing agent and a reducing agent? The oxidation number (overall charge of the atom) is reduced in reduction and this is accomplished by adding electrons. The electrons‚ being negative‚ reduce the overall oxidation number of the atom receiving the electrons. Oxidation is the reverse process: the oxidation number of an atom is increased during oxidation. This is done by removing electrons. The electrons‚ being
Premium Hydrogen Chemistry Carbon
Potassium permanganate which is a strong oxidizing agent‚ with unknown sample dissolved in deionized water. The result of the experiment was a 99.5% purity for the anhydrous iron (II) ammonium sulfate. Introduction: In this experiment‚ oxidation/reduction (or redox) will be used in the titration analysis of an iron compound. We will use potassium permanganate‚ KMnO4‚ as the titrant in the analysis of an unknown sample containing iron to determine the percent iron by mass in the sample. In
Premium Titration Potassium permanganate Oxidizing agent
Name: Date of experiment: 04/02/12 Date of report: 04/03/12 Title: Oxidation – Reduction Activity Series Purpose: To determine relative oxidizing and reducing strengths of a series of metals and ions. Oxidation and reduction reaction occur simultaneously side by side. A reduction reaction occurs only if an oxidation reaction occurs and vise-versa. Electrons are given in oxidation while in reduction electrons are gained. Oxidizing agent is a chemical substance which has a large tendency to
Premium Iron Hydrogen Zinc
Experiment 39 Oxidation – Reduction Titrations II : Analysis of Bleach A. Standardization of 0.05 M Na2S2O3 Solution KIO3 concentration 0.01 M Volume of KIO3 Trial #1 Trial #2 Final burette reading 15.01 mL 30.00 mL Initial burette reading 0.00 mL 15.01 mL Milliliters of KIO3 used 15.01 mL 14.99 mL Volume of Na2S2O3 Trial #1 Trial #2 Final burette reading 13.40 mL 25.78 mL Initial burette reading 0.03 mL 13.37 mL Milliliters of Na2S2O3 used
Premium Chlorine Bleach