DOI 10.1002/biot.200900221
www.biotechnology-journal.com
Research Article
Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets
Anal K. Jha1 and K. Prasad2
1University 2University
Department of Chemistry, T.M. Bhagalpur University, Bhagalpur, India Department of Physics, T.M. Bhagalpur University, Bhagalpur, India
Green, low-cost, and reproducible Lactobacillus-mediated biosynthesis of metal and oxide nanoparticles are reported. Silver and titanium dioxide nanoparticles are synthesized using Lactobacillus sp. procured from yoghurt and probiotic tablets. The synthesis is performed akin to room temperature in the laboratory ambience. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of metallic and oxide nanoparticles. Individual nanoparticles having the dimensions of 10–25 nm (n-Ag) and 10–70 nm (n-TiO2) are found. The mechanism involved for the synthesis of metallic and oxide nanoparticles has also been discussed.
Received 31 September 2009 Revised 28 November 2009 Accepted 24 December 2009
Keywords: Biosynthesis · Green approach · Nanobiotechnology · Nanomaterial · Nanoparticle
1 Introduction
Nature by dint of its diversity provides exponential possibilities in terms of endearing adaptability of its constituent cohorts. Bacteria make such an exciting category of microorganisms having naturally bestowed property of reducing/oxidizing metal ions into metallic/oxide nanoparticles thereby functioning as “mini” nanofactories [1, 2]. It is indeed their chemical constitutions (or metabolic status) which provides them strength to withstand even in environmentally extreme habitats. The non-pathogenic, gram positive, and mesophilic facultative anaerobe Lactobacillus, commonly used for curdling of milk, forms part of the beneficial community of microbes present in the human intestinal tract. Recent research into the interaction
References: [1] Jha, A. K., Prasad, K., Kulkarni, A. R., Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf., B 2009, 71, 226–229. [2] Jha, A. K., Prasad, K., Prasad, K., A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem. Eng. J. 2009, 43, 303–306. [3] Jha, A. K., Prasad, K., Kulkarni, A. R., Microbe mediated nanotransformation: Cadmium. NANO: Brief Rep. Rev. 2007, 2, 239–242. [4] Prasad, K., Jha, A. K., Kulkarni, A. R., Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res. Lett. 2007, 2, 248–250. [5] Prasad, K., Jha, A. K., Prasad, K., Kulkarni, A. R., Can microbes mediate nano-transformation? Ind. J. Phys. 2009, in press. [6] Prasad, K., Jha, A. K., ZnO nanoparticles: Synthesis and adsorption study. Nat. Sci. 2009, 1, 129–135. [7] Jha, A. K., Prasad, K., Prasad, K., Biosynthesis of Sb2O3 nanoparticles: A low cost green approach. Biotechnol. J. 2009, 4, 1582-1585. [8] Jha, A. K., Prasad, K., Ferroelectric BaTiO3 nanoparticles: Biosynthesis and characterization. Colloids Surf., B 2010, 75, 330–334. [9] Prasad, K., Jha, A. K., Biosynthesis of CdS nanoparticles: An improved green and rapid procedure. J. Colloids Interface Sci. 2010, 342, 68–72. [10] Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P V . ., Nachane, R. P et al., Biological synthesis of silver nanopar. ticles using the fungus Aspergillus flavus. Mater. Lett. 2007, 61, 1413–1418. [11] Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H., Nohi, A.-A., Rapid synthesis of silver nanoparticles using culture supernatants of Entrobacteria: A novel biological approach. Process Biochem. 2007, 42, 919–923. [12] Nair, B., Pradeep, T., Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Design 2002, 2, 293–298. [13] Gallegos, M. T., Schleif, R., Bairoch, A., Hofmann, K., Ramos, J. L., Arac/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev. 1997, 61, 393–410. [14] Hantke, K., Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 2001, 4, 172–177. [15] Berg, J. M., Tymoczko, J. L., Stryer, L., ‘Biochemistry’, 5th edn., W. H. Freeman & Co., New York (2003). [16] Keele, C. A., Neil, E., Joels, N., ‘Applied Physiology’, 13th edn. (Ed.: Wright S.), Oxford University Press, New York 1983. [17] Holmgren,A.,Thioredoxin and glutaredoxin systems. J. Biol. Chem. 1989, 264, 13963–13966. [18] Kanzok, S. M., Fechner, A., Bauer, H., Ulschmid, J. K. et al., Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 2001, 291, 643–646. [19] Zeller, T., Klug, G., Thioredoxins in bacteria: Functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 2006, 93, 259–266. [20] Serrano, L. M., Oxidative stress response in Lactobacillus plantarum WCFS1: A functional genomics approach, Ph.D. Thesis, Wageningen University and Research Centre, The Netherlands 2008. [21] Bagchi, D., Bagchi, M., Stohs, S. J., Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol. Cell. Biochem. 2001, 222, 149–158. [22] Shrivastava, R., Upreti, R. K., Seth, P K., Chaturvedi, U. C., . Effects of chromium on the immune system, FEMS Immun. Med. Microbiol. 2002, 34, 1–7. [23] Mirsalis, J. C., Hamilton, C. M., O’Loughlin, K. G., Paustenbach, D. J. et al., Chromium (VI) at plausible drinking water concentrations is not genotoxic in the in vivo bone marrow micronucleus or liver unscheduled DNA synthesis assays. Environ. Mol. Mutagen. 1996, 28, 60–63. [24] Condon, S., Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 1987, 46, 269–280. [25] Penninckx, M., A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb. Technol. 2000, 26, 737– 742. [26] Holmgren, A., Thioredoxin. Annu. Rev. Biochem. 1985, 54, 237–271. [27] Sundquist,A. R., Fahey, R. C., Evolution of antioxidant mechanisms: Thiol-dependent peroxidases and thioltransferase among prokaryotes. J. Mol. Evol. 1989, 29, 429–435. [28] Vido, K., Diemer, H.,Van Dorsselaer, A., Leize, E. et al., Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis. J. Bacteriol. 2005, 187, 601–610. [29] Bijlsma, J. J., Groisman, E. A., Making informed decisions: Regulatory interactions between two-component systems. Trends Microbiol. 2003, 11, 359–366. [30] Robinson,V L., Buckler, D. R., Stock,A. M.,A tale of two com. ponents: A novel kinase and a regulatory switch. Nat. Struct. Biol. 2000, 7, 626–633. [31] Tortosa, P Dubnau, D., Competence for transformation: A ., matter of taste. Curr. Opin. Microbiol. 1999, 2, 588–592. [32] Mizuno,T., Mizushima, S., Signal transduction and gene regulation through the phosphorylation of two regulatory components: The molecular basis for the osmotic regulation of the porin genes. Mol. Microbiol. 1990, 4, 1077–1082. [33] Morel-Deville, F., Fauvel, F., Morel, P Two-component sig., nal-transducing systems involved in stress responses and vancomycin susceptibility in Lactobacillus sakei. Microbiology 1998, 144, 2873–2883. [34] Altermann, E., Russell, W. M., Azcarate-Peril, M. A., Barrangou, R. et al., Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. USA 2005, 102, 3906–3918. [35] Kleerebezem, M., Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 2004, 25, 1405–1414. © 2010 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim 7