CAM is a subsequent computer-aided process after computer-aided design (CAD) and sometimes computer-aided engineering (CAE), as the model generated in CAD and verified in CAE can be input into CAM software, which then controls the machine tool.[3]
Overview
Chrome-cobalt disc with crowns for dental implants, manufactured using WorkNC CAM
Traditionally, CAM has been considered as a numerical control (NC) programming tool, wherein two-dimensional (2-D) or three-dimensional (3-D) models of components generated in CAD software are used to generate G-code to drive computer numerically controlled (CNC) machine tools. Simple designs such as bolt circles or basic contours do not necessitate importing a CAD file.
As with other “Computer-Aided” technologies, CAM does not eliminate the need for skilled professionals such as manufacturing engineers, NC programmers, or machinists. CAM, in fact, leverages both the value of the most skilled manufacturing professionals through advanced productivity tools, while building the skills of new professionals through visualization, simulation and optimization tools (the preceding is not a meaningful English sentence!).
History
The first commercial applications of CAM were in large companies in the automotive and aerospace industries for