Preview

Dedlection

Better Essays
Open Document
Open Document
2185 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Dedlection
Title:
Deflection.
Abstract:
In this experiment, we were needed to find the deflection of Ring, Semicircle and quadrant made from the curved beam. The experiment is carry out by applied these beam with a load that weight 5N for circle and 2N for Semicircle and Quadrat. For the ring shape, the load is added 5N contiuosly until the load 40N and the dial reading is note down every time the load is added. Similar step is repeated using Semicircle and Quadrant that is we add 2N load continuously until 14N and take the dial reading.
For theoretical value we use the Castigliano’s Theorem, theoretical value of deflection can be calculated. Through this experiment, the validity of the Castigliano’s Theorem in curved beam can be proven.Comparison is made between the measured deflection values and theoretical deflection values. Among reasons for discrepancies are likely the parallax errors when reading was being taken from the dial gauge due to the sensitivity of the dial gauge. A slight vibration or impact on the table will affect the reading on dial gauge. Generally, theoretical values exceed experimental values.

Introduction:
The proving of Deflection of Circular shape is based on the diameter deflection elastically under load. Applied load is known from its characteristic load-deflection curve. As far as studies are concerned, Read and Bell(Reid, S.R, and Bell, 1982) pointed out the fact that experiments in which metal rings are compressed to large deflections by a pair of opposed concentrated loads reveal a load-deflection characteristic which varies with the simple theory based upon rigid-perfectly behavior. Thus the influence of strain hardening on the deformation of thin rings subjected to opposed concentrated loads was investigated using a model in an approximate fashion and it is shown how the discrepancies between the experiments and the simple theory arise.
O’Dogherty presented the fundamental formulaefor the moment and strain distributions in circular,



References: 1. Reid, S. R. and Bell, W.W., (1982). Influence of strain hardening on the deformation of thin rings subjected to opposed concentrated loads, International Journal of Solids and Structures, Vol. 8 (8), PP. 643-658 2. O 'Dogherty M. J., (1996). The Design of Octagonal Ring Dynamometers, Journal of Agricultural Engineering Research, Vol. 63 (1), PP. 9-18 3. M. AshiqurRahman and SharifurRahman ,(2005 ), Design Parameters of A Circular Proving Ring of Uniform Strength , international Conference on Mechanical Engineering . 4. Ferdinand P.Beer, E Russell Johnston, Jr and John T. DeWolf (2006),Mechanic of Material,New York: McGraw-Hill Companies. 5. From http://en.wikipedia.org/wiki/Castigliano 's_method.Retrieved 2 May 2012

You May Also Find These Documents Helpful

  • Satisfactory Essays

    By shifting the cross-sectional area of the sections and then smearing a uniaxial load on each one, the values of displacement at maximum tensile strength were observed.…

    • 373 Words
    • 2 Pages
    Satisfactory Essays
  • Better Essays

    AM 317 Experiment 1

    • 1994 Words
    • 14 Pages

    Deflections of a beam are important to be able predict the amount of deflection for a given loading situation. This experiment addresses determining the yield point for a material to fail, so the stress in the material does not have to reach to that point. This is where understanding beam deflection becomes a useful tool. This experiment is using beam deflection theory to evaluate and compare observed deflection per load values to theoretical values. Beam deflection experiment done by four parts. Part 1 -Simple Supported Bean, part 2-Cantilever Beam, part 3-The Principle of Superposition, and Part 4-Maxwell’s Reciprocity Theorem. For part 1 and 2 beam dimensions were recorded and are moment of inertia (I) was calculated using the following formula I=bh3/12.for part1, maximum permissible loads for mid-span and quarter-span were calculated. For part 2 maximum permissible loads for mid-span and end of the cantilever beam were calculated. For both parts different loads were applied and deflections were recorded. After calculating average modulus of elasticity for simple supported beam, which was approximately (-27.6*10^6 psi), it was compared to modulus of elasticity chart. The result indicates that the beam simple supported beam was made of Wrought iron. For cantilever beam, average modulus of elasticity were calculated, which was approximately (9148056.3), and compared with young’s modulus chart .the result indicate that cantilever beam was made of Aluminum. Part 3 reference point was chosen, single concentrated load at other point was applied and deflection was recorded at reference point. Same procedure was applied at another point on the beam and deflection was recorded at reference point. Finally, both loads were applied and deflection was recorded at the…

    • 1994 Words
    • 14 Pages
    Better Essays
  • Better Essays

    Steel 1045 Final Report

    • 1478 Words
    • 6 Pages

    Out of the three materials tested, the steel 1045 exhibited the most elastic properties, with it being able to deform elastically for a greater amount of stress than for the other specimens, as indicated by its stress-strain curve as shown in figure 1, and further supported by it having the highest modulus of elasticity of all three specimens, as shown in table 2. The mild steel specimen had the second greatest modulus of elasticity, and the aluminium specimen had the lowest modulus of…

    • 1478 Words
    • 6 Pages
    Better Essays
  • Satisfactory Essays

    On datasheet 1, draw a diameter that passes through 0° and call this the x-axis. Define which end of the diameter is positive and find the component of each force along the x-axis using trigonometry. Show your working in detail. Draw another diameter that passes through 90° and define which end is positive, call this the y-axis. Determine the component of each force along the y-axis. Find the sum of the components in the x and the y axes. What is the resultant force on the ring? Is this what you expect?…

    • 542 Words
    • 3 Pages
    Satisfactory Essays
  • Better Essays

    “To study the stress and strain induced in an I-beam under symmetric and unsymmetrical bending” [2].…

    • 1242 Words
    • 5 Pages
    Better Essays
  • Powerful Essays

    The foundation of Materials Science lies in characterization of a material’s properties. Among those properties the greatest interest lies in the strength of materials, being the most basic requirement for any kind of construction. This lab aims first to describe the strength of 1045 annealed and cold-rolled steel, 2024-T4 aluminum, and cast iron through tensile testing. This includes characterization of yield strengths, modulus of elasticity, ultimate tensile strength, and fracture strength for each material. An emphasis is placed on elastic-plastic deformation in terms of ductility and how temperature and fatigue can affect this transition. Elastic and plastic…

    • 3265 Words
    • 14 Pages
    Powerful Essays
  • Powerful Essays

    The experiment was conducted to investigate the deflections of the tip of a cantilever when loaded transversely in directions not coinciding with the principal axes of the cross section, and also to determine:…

    • 1440 Words
    • 16 Pages
    Powerful Essays
  • Powerful Essays

    2. B B Muvdi, J W Mc Nabb, Engineering Mechanics of Materials, 3rd edition, 1980, Springer-Verlag…

    • 2138 Words
    • 9 Pages
    Powerful Essays
  • Good Essays

    Syllabus Spring 2013

    • 638 Words
    • 3 Pages

    Course Description: Important mechanical properties of materials engineering such as yield strength and fracture toughness experimentally…

    • 638 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    Bending of Beam Lab Report

    • 1004 Words
    • 5 Pages

    In this experiment we tested the deflection of a beam when it is placed with its widest and shortest side of its cross section on the supports. In order to examine the deflection of the beam, we applied the load at the center of its length. In addition, observing the deflection on the beam, we wanted to observe if the behavior of the deflection would be different when the position of the beam changed. After conduction the experiment we conclude that when the beam is positioned with its widest side on the supports, deflection happens faster and as more load is applied the deflection increases.…

    • 1004 Words
    • 5 Pages
    Powerful Essays
  • Good Essays

    Beam Deflection

    • 2631 Words
    • 12 Pages

    The primary goal of the experiment was to determine the structural stiffness of two cantilevered beams composed of steel and aluminum while maintaining both beams at a constant thickness and cross sectional area. The experiment also investigated material properties and dimensions and their relationship to structural stiffness. The experiment was divided into two separate parts. The results for the first part of the experiment were obtained by clamping the beam at one end while applying different masses at a specified length across the beam and then measuring deflection. The measuring device was set a specified distance from the clamped end. The following procedure was employed for both the steel and aluminum beam. The second part of the experiment required placing a single known mass at various lengths across the supported beam and then measuring the resulting deflection. This method was only completed for the steel beam. The deflections from both parts of the experiment were then averaged independently to ascertain final conclusions. The first part of the experiment resulted in a much greater deflection for the aluminum beam, with its greatest deflection spanning to an average of 2.8 mm. Moreover, the deflection for the steel beam was much less, concluding that steel has a larger structural stiffness. In fact, the structural stiffness that was found for steel was 3992 N/m, compared to aluminum, which was 1645 N/m. In addition, the theoretical values of structural stiffness for steel and aluminum were calculated to be 1767.9 N/m and 5160.7 N/m, respectively. There was a large error between the theoretical and experimental values for steel, close to 29%. This could have been due to human error, or a defective beam. The second part of the experiment resulted in validating the fact that the values of deflection are proportional to length cubed. It was also determined that deflection is inversely proportional to the elastic modulus and that structural…

    • 2631 Words
    • 12 Pages
    Good Essays
  • Powerful Essays

    There were 2 different experiment was conducted to observe the bending moment. The first experiment, Experiment 1, is to observe the bending moment at a given point using different set of weight and also to calculate the percentage error between the experimental value of the bending moment and the theoretical value of the bending moment. In second experiment, Experiment 2, the purpose is to observe how the bending moment varies at the cut when different loading conditions on the simply supported beam.…

    • 1818 Words
    • 7 Pages
    Powerful Essays
  • Good Essays

    The diameter and mass of a steel ball was measured and recorded by the class. These measurements were to determine error in measurements and the derived quantities, volume and density. The diameter was determined using a dial caliper and the mass, a triple beam balance. The results of the error for diameter were not as expected while the results of the volume and density were deviated greatly from expectations; only the weight had a small error.…

    • 359 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Fig. 4 shows that specimens subjected to minor axis bending failed at considerably lower load than those subjected to major axis bending. Rate of reduction of ultimate load is more pronounced in the case of minor axis bending. For example, the rate of reduction of ultimate load for S500 specimen, when e/xo increases from 0 to 2.8, is 5.7% and 56% for the specimen subjected to major axis bending and minor axis bending respectively. The corresponding rate of reduction of strength for S1100 specimens are 6.15% and 23.8% respectively. At larger eccentricity ratios (from 1.4 to 2.1), the curves become flatter…

    • 865 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Beam Experiment

    • 890 Words
    • 4 Pages

    To determine the reactions of the beams by (a) the experimental set-up and (b) by using the principles of statics and method of consistent deformation…

    • 890 Words
    • 4 Pages
    Satisfactory Essays