In December, Boeing held a "virtual rollout" of the Dreamliner. It demonstrated how the aircraft has been designed and will be manufactured to about 3,000 employees and more than 100 visiting airline representatives.
As part of the demonstration, Boeing showed how in the early design stages, it was discovered that an electronics box manufactured by supplier Hamilton Sundstrand wouldn't fit into the plane's electrical equipment bay. The conflict was caught, and highlighted in red, by the Catia design software. Engineers were able to redesign the bay, essentially by shifting a beam, so the box would fit. If that conflict had not been caught until production began, it could have led to lengthy delays or a costly retrofit.
As impressive as the virtual rollout seemed, it was just that—a virtual rendition of the plane. A Dreamliner has yet to be built, and despite Fowler's confidence, Boeing cannot be certain it won't run into the same difficulties encountered by Airbus, or new, as-yet-undiscovered challenges involving the heavy use of composite materials in the plane, says Hans Weber, president of Tecop International, a San Diego aviation consulting firm.
Still, if Boeing succeeds in its drive to deliver its first 787 Dreamliner to All Nippon Airways in May 2008, seven months after the first A380 is set to go into service, it will have achieved a number of concrete benefits through the use of PLM software.
First, it will have shaved one year, or about 20% to 25%, off the time it normally takes to shepherd a new plane from concept through design and engineering and into production, according to Fowler.
As a prime example of how those savings are achieved, Fowler points to virtual test flights.
Just over a year ago, pilots began putting the 787 design through a variety of flight simulations. During one such test, where the plane is evaluated on whether it could take off on a single engine, pilots determined that it