Contents lists available at SciVerse ScienceDirect
Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse
A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images
Xiaolin Zhu a, b, Desheng Liu b, c,⁎, Jin Chen a a b c State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
Department of Geography, The Ohio State University, Columbus, OH 43210, USA
Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
a r t i c l e
i n f o
Article history:
Received 18 December 2011
Received in revised form 17 April 2012
Accepted 22 April 2012
Available online 25 May 2012
Keywords:
Landsat ETM+
SLC-off
Gap filling
Geostatistical
Kriging
a b s t r a c t
Since the failure of scan-line corrector (SLC) of the Landsat 7 Enhanced Thermal Mapper Plus (ETM+) sensor, a number of methods have been developed to fill the un-scanned gaps in ETM+ images. Unfortunately, the quality of the images filled by most of these existing methods is still not satisfactory, particularly in heterogeneous regions. Recently, a Neighborhood Similar Pixel Interpolator (NSPI) was developed that can accurately fill gaps in SLC-off images even in heterogeneous regions. However, the NSPI method is a type of deterministic interpolation approach that sets its weight parameters empirically and cannot provide statistical uncertainty of prediction. This study proposes a new gap-filling method called Geostatistical
Neighborhood Similar Pixel Interpolator (GNSPI) by improving the NSPI method using geostatistical theory.
The simulation study shows that: compared with previous geostatistical methods, the image filled by GNSPI has fewer striping effects; compared with NSPI, GNSPI is less empirical in its weight parameters and can provide uncertainty of prediction. More importantly, it can generate more accurate
References: Arvidson, T., Goward, S., Gasch, J., & Williams, D. (2006). Landsat-7 long-term acquisition plan: Development and validation. Photogrammetric Engineering and Remote Sensing, 72, 1137–1146. Ball, G. H., & Hall, D. J. (1965). ISODATA, a novel method of data analysis and classification. Bédard, F., Reichert, G., Dobbins, R., & Trépanier, I. (2008). Evaluation of segment-based gap-filled Landsat ETM+ SLC-off satellite data for land cover classification in southern Saskatchewan, Canada. International Journal of Remote Sensing, 29, 2041–2054. Byrne, G. F., Crapper, P. F., & Mayo, K. K. (1980). Monitoring land-cover change by principal component analysis of multi-temporal Landsat data Call, K. A., Hardy, J. T., & Wallin, D. O. (2003). Coral reef habitat discrimination using multivariate spectral analysis and satellite remote sensing of Remote Sensing, 24, 2627–2639. Chen, J., Zhu, X., Vogelmann, J. E., Gao, F., & Jin, S. M. (2011). A simple and effective method for filling gaps in Landsat ETM plus SLC-off images Environment, 115, 1053–1064. Cohen, W. B., & Goward, S. N. (2004). Landsat 's role in ecological applications of remote sensing Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data Cressie, N. (1985). Fitting variogram models by weighted least squares. Journal of the International Association for Mathematical Geology, 17, 563–586. Fisher, J. I., Mustard, J. F., & Vadeboncoeur, M. A. (2006). Green leaf phenology at Landsat resolution: Scaling from the field to the satellite Fuller, R. M., Groom, G. B., & Jones, A. R. (1994). The land-cover map of Great-Britain — An automated classification of Landsat Thematic Mapper data Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press. Goward, S. N., Arvidson, T. J., Faundeen, J., Williams, D. L., Irons, J., & Franks, S. (2006). Historical record of Landsat global coverage: Mission operations, NSLRSDA, and international cooperator stations. Photogrammetric Engineering and Remote Sensing, 72(10), 1155–1169. Huang, C., Davis, L. C., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23, 725–749. Ju, J. C., & Roy, D. P. (2008). The availability of cloud-free Landsat ETM plus data over the conterminous United States and globally Liu, D., & Cai, S. (2011). A spatial-temporal modeling approach to reconstructing land-cover change trajectories from multi-temporal satellite imagery American forest disturbance mapped from a decadal Landsat record. Remote Sensing of Environment, 112, 2914–2926. Matheron, G. (1971). The theory of regionalized variables and its applications [(Les Cahiers du center de Morphologie Mathematique de Fontainebleau 5)] Maxwell, S. K. (2004). Filling landsat ETM+ SLC-off gaps using a segmentation model approach Maxwell, S. K., Schmidt, G. L., & Storey, J. C. (2007). A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images Remote Sensing, 28, 5339–5356. Melgani, F. (2006). Contextual reconstruction of cloud-contaminated multitemporal multispectral images Papritz, A., & Stein, A. (1999). Spatial prediction by linear kriging. In A. Stein, F. D. van der Meer, & B Pringle, M. J., Schmidt, M., & Muir, J. S. (2009). Geostatistical interpolation of SLC-off Landsat ETM plus images Riano, D., Chuvieco, E., Salas, J., & Aguado, I. (2003). Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types Transactions on Geoscience and Remote Sensing, 41, 1056–1061. Roy, D. P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., et al. (2008). Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 112, 3112–3130. Tarabalka, Y., Benediktsson, J. A., & Chanussot, J. (2009). Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques Transactions on Geoscience and Remote Sensing, 47, 2973–2987. Teillet, P. M., Barker, J. l., Markham, B. L., Irish, R. R., Fedosejevs, G., & Storey, J. C. (2001). Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. USGS (2004). Phase 2 gap-fill algorithm: SLC-off gap-filled products gap-fill algorithm methodology. Available online at landsat.usgs.gov/documents/L7SLCGapFilledMethod.pdf (accessed on November 2, 2011). USGS (2012). Landsat 5 suspension of operations extended. Available online at http:// www.usgs.gov/newsroom/article.asp?ID=3109 (accessed on March 25, 2012). Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Chichester: John Wiley & Sons. Williams, D. L., Goward, S., & Arvidson, T. (2006). Landsat: Yesterday, today, and tomorrow Zhang, C., Li, W., & Travis, D. (2007). Gaps-fill of SLC-off Landsat ETM plus satellite image using a geostatistical approach Zhu, X., Chen, J., Gao, F., & Masek, J. G. (2010). An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions Sensing of Environment, 114, 2610–2613. Zhu, X., Gao, F., Liu, D., & Chen, J. (2012). A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images