Preview

Genetic Transformation

Satisfactory Essays
Open Document
Open Document
384 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Genetic Transformation
The Phenomenon that is Genetic Transformation
Matt Kimmel
November 17, 2011
Bio 121-012

Introduction Genetic transformation is when the genetic makeup of an organism is altered by it receiving external genetic material (Barnhart and Hopper, 2011). Bacterial transformation was first seen during an experiment by Fredric Griffith in 1928. In the experiment there were two strains of bacteria, a virulent strain, and non-virulent strain. Virulent simply means disease causing, and therefore non-virulent means harmless. He killed the virulent strain with heat and then mixed it with the non-virulent strain, to his astonishment the virulent properties were exhibited (Barnhart and Hopper, 2011). To explain, the virulent bacteria was killed by the heat, but its DNA was not destroyed so the non-virulent strain of bacteria picked up the DNA from the environment. This is genetic transformation. In our experiment, we transformed E. coli cells. We used E. coli cells for a few reasons, it's single celled so we simply have to insert genes into a single cell for it to exhibit the trait, it reproduces quickly so we see results fast, there is a commonly used non-virulent strain, and it is cheap to grow and does not require a lot of resources. A plasmid is what we are going to use to give the E. coli cells their extra genetic material. Plasmids are separate pieces of DNA that are not part of the circle of DNA that holds most of the genes in a genome (Brooker et al., 2011). The plasmid, pGLO, is what we put inside the E. coli, it contains three genes: bla, araC, and GFP. The gene bla stands for β- lactamase, which breaks down ampicillin, an antibiotic that kills E. coli (Barnhart and Hopper, 2011). The gene araC and the gene GFP work together. The araC gene when turned on, also turns on the GFP gene, it is called a promoter gene. The GFP gene is a gene taken from a luminescent jellyfish, when turned on it glows in the presence of UV light. So for the GFP gene to be turned on

You May Also Find These Documents Helpful

  • Good Essays

    Some bacteria take up DNA spontaneously (natural transformation), but this is not true of E. coli. Thus, artificial methods for forcing DNA entry into E. coli must be used (artificial transformation). One method for introducing DNA is a chemical transformation procedure called calcium shock. It is not known why calcium shock of E. coli induces the cells to take up DNA, but presumably it somehow loosens the cell envelope structure. This procedure works best on covalently closed circular DNA. The frequency of calcium shock transformation also decreases as the size of the plasmid increases.…

    • 2055 Words
    • 7 Pages
    Good Essays
  • Good Essays

    The topic of this research involved the occurrence of genetic transformation in bacteria (E. Coli). More specifically, a previously prepared pGLO plasmid--which consisted of the gene to be cloned--was used to transform non-pathogenic bacteria. The pGLO plasmid contained a gene for the Green Fluorescent Protein (GFP) from a bioluminescent jellyfish and a gene for resistance to ampicillin, an antibiotic. Essentially, we wanted to determine the conditions of the bacteria that would glow. Our hypothesis was that the transformed solution with no plasmid DNA and ampicillin would produce no bacteria colonies, as it wouldn 't be able to grow without the gene for ampicillin resistance. Also, the transformed solution with just LB and ampicillin would produce bacteria colonies but the transformed solution with LB/ampicillin/Arabinose would produce glowing bacteria colonies (as Arabinose allows the GFP gene to be expressed, but in both cases bacteria colonies would be present because of the gene of resistance to the antibiotic, ampicillin). We essentially made the required transformed solutions--and the controls--swiped them on the agar plate, and then observed to see whether or not bacteria colonies grew and whether or not they glowed. Our data fully supported our hypothesis. We can thus conclude that bacteria can take in foreign DNA through the process of transformation and that this foreign DNA can fundamentally change the bacteria (ex: making it glow). Future research can involve inserting other pieces of DNA into bacteria from different organisms, making the bacteria take on various phenotypic characteristics.…

    • 1330 Words
    • 5 Pages
    Good Essays
  • Better Essays

    pGLO Lab Report

    • 835 Words
    • 4 Pages

    The plasmid pGLO contains an antibiotic-resistance gene, ampR, and the GFP gene is regulated by the control region of the ara operon. Ampicillin is an antibiotic that kills E. coli, so if E. coli, so if E. coli cells contain the ampicillin-resistance gene, the cells can survive exposure to ampicillin since the ampicillin-resistance gene encodes an enzyme that inactivates the antibiotic. Thus, transformed E. coli cells containing ampicillin-resistance plasmids can easily be selected simply growing the bacteria in the presence of ampicillin-only the transformed cells survive. The ara control region regulates GFP expression by the addition of arabinose, so the GFP gene can be turned on and off by including or omitting arabinose from the culture medium.…

    • 835 Words
    • 4 Pages
    Better Essays
  • Powerful Essays

    Sq3r Chapter 13

    • 1466 Words
    • 6 Pages

    7) In gene cloning, the bacterial cells take up the recombinant plasmid DNA through a process called transformation. Bacterial cells can be transformed using electric pulsation or heat. The short electric pulse or a brief rise in temperature causes openings in the plasma membrane. The bacterial cells make copies of the recombinant plasmid DNA during cell…

    • 1466 Words
    • 6 Pages
    Powerful Essays
  • Good Essays

    Plasmids are small circular autonomously replicating pieces of DNA that can be found inside of a prokaryotic bacterial cell. By barrowing a cell’s polymerase they replicate their own DNA. They are easy to extract from the bacterial cells due to their size. Plasmids are helpful for cloning foreign genes because of their ability to express antibiotic resistance as well their ability to be modified to express proteins of interest. A pGLO plasmid contains genes for the green florescent protein (GFP) as well as the gene for ampicillin resistance known as beta-lactamase. It also contains a gene regulation system (operon) that has the ability to control expression of the GFP gene in transformed cells known as araC. The source of GFP is naturally founds within a…

    • 463 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Genetic transformation is a process that primarily is inserting new DNA into an organism to change that organism’s trait. This process has many useful benefits when used correctly in different organisms. In this lab, bacteria was transformed by inserting DNA for Green Fluorescent Proteins. The DNA for these proteins were taken from bioluminescent jellyfish Aequorea victoria. One of the main lessons of the lab is learning of the use of ‘plasmids’. Plasmids are small pieces of DNA that usually code for one trait and are easily transferable between bacteria. This transfer of plasmids between bacteria is actually extremely helpful for them and are key in their survival. The plasmid that codes for the Green Fluorescent Proteins is accompanied with a gene for resistance to the antibiotic ampicillin. To ‘switch on’ the gene for fluorescence caused by the proteins, sugar arabinose must be added to the bacteria’s environment. If there is no sugar arabinose introduced to the plates, then the bacteria will appear white and will not glow, even if the gene for the proteins is successfully inserted. If the gene was successfully inserted and there is sugar arabinose present then the bacteria will glow a fluorescent green. The objectives for this lab is was to see the effects on bacteria in four different cases. The first case is the effect on bacteria when the gene for pGLO is introduced with LB (a ‘broth’ like substance that bacteria feed off of) and ampacillin. The second case is the effect on bacteria when the gene for pGLO is introduced with LB, ampacillin, and sugar arabinose. The third case is the effect on bacteria when no gene for pGLO is introduced, but LB and ampacillin is still introduced, The fourth case is the effect on bacteria when no gene for pGLO is introduced, but bacteria is still placed in a LB enriched environment. The…

    • 938 Words
    • 4 Pages
    Good Essays
  • Good Essays

    The purpose of this experiment was understand the process of transformation and the effects on gene expression. The pGLO(-) culture had growth on the LB medium, while the LB amp and LB amp + ara mediums had no growth. It was expected that the LB medium had growth on the plate because it served as a control. The LB amp and LB amp + ara had no growth or glow under UV light because they were not successfully transformed and still contained the antibiotic ampicillin that prevented the growth of E. coli (3).…

    • 263 Words
    • 2 Pages
    Good Essays
  • Good Essays

    E. Coli Lab Report

    • 811 Words
    • 4 Pages

    The purpose of this lab is to successfully infiltrate E. coli bacterial cells with a pARA-R plasmid that is antibiotic resistant and has the rfp gene, or red fluorescent protein. This can be verified if the E. coli obtains the characteristics of the plasmid when it enters. To start, three Petri plates containing agar are needed. On each plate there is a control group and a treatment group; the treatment group being the one with the plasmid. Before the plasmid is put with the E. coli, first the bacteria are “stressed out” by warming them up in a hot water bath and cooling them down very rapidly in ice. The first plate consists of Luria Broth (LB), the second plate consists of LB and the antibiotic ampicillin (amp), and the last one contains LB, amp, and the sugar arabinose (ara). The bacterial cells are subjected to a heat shock and then are placed onto the three plates. The plasmid is spread on to only half of the first two plates, on the sides of the treatment group. Half of the E. coli get the plasmids and the other half do not (that side being the control group). On the third plate the plasmids are spread on the whole plate. The bacteria are left in an…

    • 811 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Ap Biology Unit 9 Essay

    • 659 Words
    • 3 Pages

    Transformation is one of three processes for horizontal gene transfer by which genetic material passes from bacterium to another. “It is the acting of altering a genetic cell resulting from putting together exogenous genetic material from its surroundings through the cell membrane(s),”(Wikipedia, 2017, p.1).…

    • 659 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Transformation is the transfers of virulence from one cell to another, through the transferring of genetic material. It was originally postulated in 1928 through the works of Federick Griffith, a British microbiologist. Griffith observed that the mutant form, non-virulent form, of the bacteria Streptococcus Pnumoniae could be transformed into the normal, virulent form, when injected into mice along with heat killed normal forms. He concluded that somehow the information the dead virulent form had transformed the mutant form into a virulent form.…

    • 1470 Words
    • 6 Pages
    Better Essays
  • Powerful Essays

    Biology Lab

    • 2372 Words
    • 10 Pages

    If the pGLO plasmid is inserted into competent Escherichia coli cells, then the transformed bacteria will be resistant to ampicillin and will glow green under UV light. If samples of DNA are cut using certain restriction enxymes and separated using gel electrophoresis, then the smaller the DNA fragment cut, the greater the distance it will travel in the gel.…

    • 2372 Words
    • 10 Pages
    Powerful Essays
  • Good Essays

    just to join

    • 685 Words
    • 3 Pages

    1. The process by which one strain of bacteria is apparently changed into another strain is called.…

    • 685 Words
    • 3 Pages
    Good Essays
  • Better Essays

    The First

    • 1338 Words
    • 6 Pages

    In the first part of this lab, E.coli cells were transformed with an R-plasmid carrying a tetracycline resistant gene, giving rise to tetracycline resistant E.coli strain. This was accomplished through transformation, which allowed E.coli to directly uptake the naked DNA molecule carrying the antibiotic resistant gene (1). However, in order to take up the DNA and incorporate them into their genome via recombination, cells must be competent (1). Therefore, E.coli cells which are not competent under normal conditions were treated with cold and high concentration of CaCl2, in order to make them artificially competent (1). The transformants were grown on the LB with the tetracycline antibiotic, and on the LB without the tetracycline. Then the viable competent cells and the viable cells were counted to calculate the frequency of transformation.…

    • 1338 Words
    • 6 Pages
    Better Essays
  • Satisfactory Essays

    Lab Biology Final

    • 330 Words
    • 3 Pages

    To set up a way to measure the transformation efficiency, we made a control group consisting of E. Coli, Agar, LB and Ampicillin and we expect the transformation efficiency to be zero because of the absence of a plasmid. The experimental group is the same as the control group except the plasmid is included. Thus, the only difference between the control and the experimental group is the presence of plasmid. The transformation efficiency was calculated in order to determine the impact the plasmid has on transformation by dividing the total number of colonies growing on the agar plate by the amount of DNA spread on the LB/amp plate (in ng).…

    • 330 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    Gene Transfer Lab Report

    • 939 Words
    • 4 Pages

    Escherichia coli is a bacterium that can affect our health or even kill. Like most bacteria, E. coli is able to change and progress into different forms based on genetic changes that they can go through. One example of this genetic change is shown in the E. coli becoming immune to ampicillin is blood infections. Because ampicillin has been used so frequently to fight the symptoms of an E. coli infection, the bacteria has been able to change itself genetically by producing more of an inhibitor resistant TEM in order to continue it’s genetic line and reproduce causing infections in humans (Walters-Toews, et al. 2011). Another example from the science field would be an experiment that suggests that E. coli is not only becoming resistant to ampicillin, but also other antibiotics including Cotrimoxazole and Cefuroxime (Renal & Urology News, 2007). This experiment is meant to prove that through genetic transfer using plasmid DNA, the E. coli can become bioluminescent and immune to the ampicillin. By adding plasmid DNA to the E. coli cells, the genetic composition of the cells will be different. I predict that the E. coli cells containing no ampicillin will be able to grow colonies. I also predict that the plates with plasmid DNA will show signs of bioluminescence. The plate with ampicillin present with no plasmid DNA will not be able to grow colonies and will not be capable of bioluminescence.…

    • 939 Words
    • 4 Pages
    Good Essays