GM crops: Promise and reality
The introduction of the first transgenic plant 30 years ago heralded the start of a second green revolution, providing food to the starving, profits to farmers and environmental benefits to boot. Many GM crops fulfilled the promise. But their success has been mired in controversy with many questioning their safety, their profitability and their green credentials. A polarized debate has left little room for consensus. In this special issue, Nature explores the hopes, the fears, the reality and the future.
GM crops have bred superweeds: True
Jay Holder, a farming consultant in Ashburn, Georgia, first noticed Palmer amaranth (Amaranthus palmeri) in a client’s transgenic cotton fields about five years ago. Palmer amaranth is a particular pain for farmers in the southeastern United States, where it outcompetes cotton for moisture, light and soil nutrients and can quickly take over fields.
Free podcast
Case studies reveal the complex truths behind GM crop myths.
00:00
Go to full podcast
Since the late 1990s, US farmers had widely adopted GM cotton engineered to tolerate the herbicide glyphosate, which is marketed as Roundup by Monsanto in St Louis, Missouri. The herbicide–crop combination worked spectacularly well — until it didn’t. In 2004, herbicide-resistant amaranth was found in one county in Georgia; by 2011, it had spread to 76. “It got to the point where some farmers were losing half their cotton fields to the weed,” says Holder.
Some scientists and anti-GM groups warned that GM crops, by encouraging liberal use of glyphosate, were spurring the evolution of herbicide resistance in many weeds. Twenty-four glyphosate-resistant weed species have been identified since Roundup-tolerant crops were introduced in 1996. But herbicide resistance is a problem for farmers regardless of whether they plant GM crops. Some 64 weed species are resistant to the herbicide atrazine, for