Biology 1407
Horizontal Gene Transfer Responsible for Carotenoid Production in Aphids
Horizontal Gene Transfer
Horizontal gene transfer (referred to as HGT for the rest of the paper) is said to have occurred when an organism successfully incorporates genetic information from another organism into its own genetic makeup when the first organism is not the offspring of the other organism. HGT, or lateral gene transfer (LGT), is used to describe both the artificial and natural transfers of genetic information from one organism to another. The flow of genetic information is thought to occur relatively frequently between microorganisms. Current evidence suggests that roughly 2% of genetic information in microorganisms is acquired though HGT. While significant it is is not widely believed to be enough to require changes to the current organization of phylogenetic trees. The transfer of genetic information is not limited by species, kingdom or even domain and can occur between species that are very different.
Within the kingdom of Bacteria HGT has been observed to function in three ways. The first is referred to as bacterial transformation and is caused by the alteration of a cell, which results in the uptake and expression of foreign DNA. Transduction is the process by which DNA from one bacterium is transferred to another bacterium through a virus, which infects one taking genetic information and then the other, depositing the genetic information. The final way HGT occurs is though a process known as conjugation. Conjugation is a form of bacterial “mating” which results in the sharing of genes. This process is common among bacteria of the same species but occurs with less frequency between bacteria of different species.
While evidence for HGT in microbes is abundant, evidence for HGT in higher order multicellular organisms is uncommon. As such the mechanisms by which HGT occurs from microbes to plants and microbes to animals has not