CHAPTER 6: SEQUENCE AND SERIES Solution 1. (a) 2. (a) (b) (c)
2r 1 r 1 4
8
(b)
(6 r) 3 (c) r 1
19
2r 3 (1) r 1 r 6 r 1
14
(d)
r r 1
n
r
2
k 1 k 1 5
=(1+1)+(2+1)+(3+1)+(4+1)=14
1 1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 =8 i i 1
k k 1 8
1
1 1 1 1 1 17 = 2 1 2 3 4 5 60
3. (a) 2,5,8,11,…. Where a = 2 and d = 5-2 = 3 T5= a+4d = 2+4(3) = 14 Tn= a+(n-1)d = 2+(n-1)(3) = 3n-1 Therefore T100= 3(100)-1=299
(b) Let a=2, d=s T5= a+4d = 2+4(s) = 2+4s Tn= a+(n-1)d = 2+(n-1)(s) T100= 2+99s
4. (a) T10
55 7 , T2 2 2 55 7 a 9d a d ……………(ii) ………(i) and 2 2 (i)-(ii): 8d=24 We obtain d=3 and substitute in (i) 1 we obtain a= 2
(b) 1,4,7,….,88 Let a=1 and d = 4-1=3 88= a+(n-1)d = 1+(n-1)(3) Therefore n=30 (c) 4,x,y,z, 10 Let a=4 and a+4d =10 3 1 1 x a d 5 , y a 2d 7, z a 3d 8 d= 2 2 2 5. (a) 1+5+9+……+401 Let a=1, d=4 401=1+(n-1)4 n=101
1
Mathematics SM0013 Topic 6 : Sequences and Series –Tutorial__________________________________________________________________________________________
S101
10
101 1 401 =20301 2
10 10 k 0 k 0
(b)
3 0.25k = 31 0.25 k k 0
=3(11)+0.25[0+1+2+….+10] 11 = 33 0.25 0 10 2 =46.75 (c)
1 2n= 1 - 2 n n 0 n 0 n 0
20
20
20
=[ 1+1+….+1]-2[0+1+2+….+20] 21 = 21 2 0 20 2 = -399 6. (a) 200+202+204+….+1998 a=200 , d=2 1998=200+ (n-1)2 n=900 900 200 1998=989100 S 900 2 n (b) S n 4n 20 2 (i) Sn=2n(n+5) Sn-1=2(n-1)[(n-1)+5] =2(n-1)(n+4) (ii) T1 = S1 = 2(1)(1+5)=12 Since T1+T2 = S2 12+T2=2(2)(2+5) T2=16 d = T2-T1 =16-12 =4 7. (a) 3+6+12+…6 terms Let a=3, r =2 3(26 1) =189 S6 2 1 1 1 (b) 1 ...., 20