Around 1830, the Hungarian mathematician János Bolyai and a Russian mathematician named Nikolai Ivanovich Lobachevsky separately published studies on hyperbolic geometry. Both mathematicians spent years working with the fifth postulate. Neither of them gained public recognition for the work they put into their geometric discoveries. Hyperbolic geometry is a type of non-Euclidean geometry that uses the statement “If l is any line and P is any point not on l, then there exists at least two lines through P that are parallel to l” or any statement equivalent to this statement as its parallel postulate. It is the study of saddle shaped space. It applies to areas of science such as determining the orbit of objects within intense gradational fields, space travel, and astronomy. Einstein’s theory of relativity also involves hyperbolic geometry. There are many major differences between hyperbolic geometry and Euclidean geometry. In hyperbolic geometry, the sum of the angles of a triangle is less than 180 degrees and triangles with the same angles have the same area, but there are no similar triangles.
In 1854, Bernhard Riemann founded Riemannian geometry, which elliptic geometry was a part of.