In this section, we would conduct various trials on each of our bridges consisting of an earthquake simulation and a strength test. In each of these test, my bridge was put under the forces of tension, compression, shearing and torsion. My partner and I’s bridge reacted in a very positive way. For instance, our bridge stood the test and overcame each of theses forces of stress with minimal damage done with only one stick, pertaining to one of the trusses, that fell off. In the earthquake simulation, my bridge was able to withstand the stress, without being broken into pieces. The modification that my partner and I applicated on to our construct demonstrated that they did provide it with support, by holding the bridge firm and preventing further damage. In order to do this some of the modification, we applied included trusses to distribute weight through a framework of triangles. We also utilized tongue and groove modification on the deck to provide support and allow it to stay in place. There were some flaws and strengths that we saw throughout these tests. We noticed one of the weaknesses of our bridge was that it improperly glued leading to some structural foundation loss, also that our support was two weak and should create a stronger less lightweight bridge to withstand a greater weight. One of the strengths that our bridge demonstrated was that our modification each were fully functional and engaged in each of the test dissipating the weight throughout the bridge. When it came to bridge strength, our bridge held a moderate weight of fifty pounds which is significantly larger that the half a pound the bridge weighs. This demonstrates that with superior engineer something that weighs very little can lift more than its actual weight. If I could make any change or add newer modifications to my bridge, firstly I would remove the legs and to towers to replicate the
In this section, we would conduct various trials on each of our bridges consisting of an earthquake simulation and a strength test. In each of these test, my bridge was put under the forces of tension, compression, shearing and torsion. My partner and I’s bridge reacted in a very positive way. For instance, our bridge stood the test and overcame each of theses forces of stress with minimal damage done with only one stick, pertaining to one of the trusses, that fell off. In the earthquake simulation, my bridge was able to withstand the stress, without being broken into pieces. The modification that my partner and I applicated on to our construct demonstrated that they did provide it with support, by holding the bridge firm and preventing further damage. In order to do this some of the modification, we applied included trusses to distribute weight through a framework of triangles. We also utilized tongue and groove modification on the deck to provide support and allow it to stay in place. There were some flaws and strengths that we saw throughout these tests. We noticed one of the weaknesses of our bridge was that it improperly glued leading to some structural foundation loss, also that our support was two weak and should create a stronger less lightweight bridge to withstand a greater weight. One of the strengths that our bridge demonstrated was that our modification each were fully functional and engaged in each of the test dissipating the weight throughout the bridge. When it came to bridge strength, our bridge held a moderate weight of fifty pounds which is significantly larger that the half a pound the bridge weighs. This demonstrates that with superior engineer something that weighs very little can lift more than its actual weight. If I could make any change or add newer modifications to my bridge, firstly I would remove the legs and to towers to replicate the