Mobile positioning technology has become an important area of research, for emergency as well as for commercial services. Mobile positioning in cellular networks will provide several services such as, locating stolen mobiles, emergency calls, different billing tariffs depending on where the call is originated, and methods to predict the user movement inside a region. The evolution to location-dependent services and applications in wireless systems continues to require the development of more accurate and reliable mobile positioning technologies. The major challenge to accurate location estimation is in creating techniques that yield acceptable performance when the direct path from the transmitter to the receiver is intermittently blocked. This is the Non-Line-Of-Sight (NLOS) problem, and it is known to be a major source of error since it systematically causes mobile to appear farther away from the base station (BS) than it actually is, thereby increasing the positioning error.
In this paper, we present a simple method for mobile telephone tracking and positioning with high accuracy. Through this we will discuss some technology used for mobile positioning and tracking
1. INTRODUCTION TO MOBILE TECHNOLOGY
Configuration of a typical mobile telecommunication network.
As shown in Figure 3, the mobile telecommunication network includes a several base stations (BSs) T 1 to T N for providing mobile telecommunication service to a mobile subscriber through a mobile telephone M1, a base station controller (BSC) for controlling the BSs T 1 to T N, and a mobile telephone switching office (MTSO) for connecting the BSC to another BTS or a PSTN (Public Switched Telephone Network). In a cellular mobile telecommunication network, the whole service area is divided into a several coverage areas having respective base stations (BS). Each BS coverage area is called a "cell." Each BS is provided with a frequency of a range between 450 to900 MHz. More than one cells can