ANSWER
Variance of Stock = 0.10 x (0.25 – 0.033)2 + 0.15 x (0.12 – 0.033)2 + 0.50 x (0.04 – 0.033)2 + 0.25 x (-0.12 – 0.033)2
= 0.10 x 0.0471 + 0.15 x 0.0076 + 0.50 x 0.0000 + 0.25 x 0.0234
= 0.0047 + 0.0011 + 0.0000 + 0.0059 = 0.0117 or 1.17%
Standard Deviation of Stock = (0.0117)1/2 = 0.1083 or 10.83%
Variance of Corp. Bond = 0.10 x (0.09 – 0.052)2 + 0.15 x (0.07 – 0.052)2 + 0.50 x (0.05 – 0.052)2 + 0.25 x (0.03 – 0.052)2
= 0.10 x 0.0014 + 0.15 x 0.0003 + 0.50 x 0.0000 + 0.25 x 0.0005
= 0.0001 + 0.0000 + 0.0000 + 0.0001 = 0.000316 or 0.00316%
Standard Deviation of Corp. Bond = (0.000316)1/2 = 0.017776 or 1.78%
Variance of Gov. Bond = 0.10 x (0.08 – 0.042)2 + 0.15 x (0.06 – 0.042)2 + 0.50 x (0.04 – 0.042)2 + 0.25 x (0.02 – 0.042)2
= 0.10 x 0.0014 + 0.15 x 0.0003 + 0.50 x 0.0000 + 0.25 x 0.0005
= 0.0001 + 0.0000 + 0.0000 + 0.0001 = 0.000316 or 0.0316%
Standard Deviation of Gov. Bond = (0.000316)1/2 = 0.017776 or 1.78%
The best choice is the corporate bond. First comparing the corporate bond and the stock, the corporate bond has a higher expected return and a lower variance (standard deviation). Second comparing the corporate bond and the government bond the corporate bond has a higher return and the same variance (standard deviation). This result is due to the low probabilities of “good” economic states where the stock performs