Illustration from Curtis's Botanical Magazine by William Curtis (1746–1799)
The leaf blade is divided into two regions: a flat, heart-shaped photosynthesis-capable petiole, and a pair of terminal lobes hinged at the midrib, forming the trap which is the true leaf. The upper surface of these lobes contains red anthocyanin pigments and its edges secrete mucilage. The lobes exhibit rapid plant movements, snapping shut when stimulated by prey. The trapping mechanism is tripped when prey contacts one of the three hair-like trichomes that are found on the upper surface of each of the lobes. The trapping mechanism is so specialized that it can distinguish between living prey and non-prey stimuli such as falling raindrops;[5] two trigger hairs must be touched in succession within 20 seconds of each other or one hair touched twice in rapid succession,[5] whereupon the lobes of the trap will snap shut in about one-tenth of a second.[6] The edges of the lobes are fringed by stiff hair-like protrusions or cilia, which mesh together and prevent large prey from escaping. (These protrusions, and the trigger hairs, also known as sensitive hairs, are probably homologous with the tentacles found in this plant’s close relatives, the sundews.) Scientists have concluded that the Venus flytrap is closely related to Drosera (sundews), and that the snap trap evolved from a fly-paper trap similar to that of Drosera.[7]
The holes in the meshwork allow small prey to escape, presumably because the benefit that would be obtained