MA‚ PAULINE Date Performed: 10 SEPTEMBER 2014 NACIONGAYO‚ DANIELLE Date Submitted: 17 SEPTEMBER 2014 TEDERA‚ YVES HEAT EFFECTS AND CALORIMETRY Experiment No. 2 I. RESULTS A. Determination of Heat Capacity In this experiment‚ an improvised calorimeter was used to determine the heat capacity. The calorimeter weighed 4.47 grams prior to the addition of water. Tap water‚ 40 mL to be exact‚ was added to the calorimeter which increased the weight to 43.87 grams. The water was measured using
Free Thermodynamics Enthalpy Energy
Abstract Different substances react in various ways when exposed to heat. The amount of energy necessary to heat a certain amount of water by one degree is different than that of another liquid or substance. The technical term used to determine this characteristic is called heat capacity or specific heat capacity. The purpose of this experiment is to find the heat capacity of water‚ orange juice‚ and olive oil. A couple of very specific equipment is needed in order to complete this experiment
Premium Heat Energy Thermodynamics
After Eliezer’s father was beaten by Idek‚ a Kapo‚ Eliezer says‚ “I had watched the whole scene without moving. I kept quiet. In fact I was thinking of how to get farther away so that I would not be hit myself. What is more‚ any anger I felt at that moment was directed‚ not against the Kapo‚ but against my father. I was angry with him‚ for not knowing how to avoid Idek’s outbreak. That is what concentration camp life had made of me.” Eliezer’s complete outlook on life has changed since things started
Premium Watch Family Father
MEA heat exchanger E-114. This heat exchanger is a counter flow shell and tube heat exchanger and is designed to heat up the rich MEA stream flowing from the CO2 absorber to the stripper. The principle that is applied is heat exchange between cold stream and hot stream which in this case the heat energy is transferred from the lean MEA stream to the rich MEA stream. Apart from this‚ the chemical engineering design for this heat exchanger includes the determination of its dimensions and heat exchange
Premium Heat transfer Heat exchanger
Heat Transfer Through Jacket Objective The objective of this example is to analyze heat transfer in a pilot plant using simulation models. The first step is to use pilot plant data to calculate heat transfer parameters. The second part involves using simulation models to examine the trade-off between jacket parameters and heating times. Process Description Assumptions: The stirred tank is assumed to be perfectly mixed. The contributions of agitator work‚ heat loss to environment
Free Heat transfer Heat Temperature
demonstrate the working principles of industrial heat exchangers ii. To investigate the efficiency of the heat exchanger in parallel and counter flow arrangements 1.0 INTRODUCTION A heat exchanger is equipment in which heat exchange takes place between 2 fluids that enter and exit at different temperatures. The main function of heat exchanger is to either remove heat from a hot fluid or to add heat to the cold fluid. The direction of fluid motion inside the heat exchanger can normally categorised as
Premium Heat exchanger Heat transfer Temperature
mixture‚ and (c) the density of the mixture. 3 2. A piston–cylinder device contains 0.85 kg of refrigerant-134a at 10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now‚ heat is transferred to refrigerant-134a until the temperature is 15°C. Determine (a) the final pressure‚ (b) the change in the volume of the cylinder‚ and (c) the change in the enthalpy of the refrigerant-134a. 3. Determine the specific volume of superheated
Premium Heat Thermodynamics
Conclusions The purpose of this experiment was to find the relationship between a substance’s specific heat and its atomic weight. In the lab‚ the substances with the higher atomic weights had less specific heat. From this‚ we can conclude that specific heat and atomic weight have an inverse relationship‚ meaning as one decreases the other increases. The reason for this is because if atoms are small‚ or light‚ they have the ability to pack tightly together‚ leaving almost no space between them
Premium Heat Chemical element Thermodynamics
Activity 33 PS-2826 Latent Heat of Fusion Thermodynamics: phase change‚ latent heat of fusion‚ melting Qty 1 1 1 1 1L 0.5 L 1 Equipment and Materials PASPORT Xplorer GLX Fast-Response Temperature Probe (included with GLX) Basic Calorimetry Set (1 calorimeter cup) Balance Water‚ about 15 degrees warmer than room temperature Ice‚ crushed Towel Part Number PS-2002 PS-2135 TD-8557 SE-8723 Purpose The purpose of this activity is to determine the amount of thermal energy needed to change a specific
Premium Energy Thermodynamics Heat
Experiment 1 The Heat Capacity Ratio of Gases Purpose The purpose of this experiment is to calculate the heat capacity ratio of gases‚ Helium‚ Nitrogen and Carbon Dioxide‚ and compare with their theoretical values. Introduction Thermodynamics is the study of heat as it relates to energy and work. There are various properties which all relate to each other when determining the characteristic of a certain substance. One of such properties is heat capacity‚ which is the amount of heat energy required
Free Thermodynamics Temperature Oxygen