Discussion Our experiment is divided into 9 parts: A. Effect of Nature of Reactants to the reaction rate. B. Effect of Temperature to the reaction C. Effect of Concentration to the Reaction Rate D. Effect of Catalyst to the Reaction Rate E. Chromate-Dichromate Equilibrium F. Thiocyanatoiron (III) Complex Ion Equilibrium G. Weak Acid Equilibrium (Ionization of Acetic Acid) H. Weak Base Equilibrium Ionization of Ammonia I. Saturated Salt (Sodium Chloride) Equilibrium On part (A) we are
Premium Chemical reaction Energy
Biology Computational Systems Biology Lecture 3: Enzyme kinetics Tue 17 Jan 2006 with the collaboration of Luna De Ferrari 1 Images from: D. L. Nelson‚ Lehninger Principles of Biochemistry‚ IV Edition‚ W. H. Freeman ed. A. Cornish-Bowden Fundamentals of Enzyme Kinetics‚ Portland Press‚ 2004 A. Cornish-Bowden Enzyme Kinetics‚ IRL Press‚ 1988 Computational Systems Biology Summary: • • • • • • 2 Simple enzyme kinetics Steady-state rate equations Reactions of two substrates
Premium Enzyme Enzyme inhibitor Reaction rate
Kinetic Theory Objectives • Describe how the kinetic-molecular theory is used to explain how gases behave at different temperatures. (Exploration 1) • Analyze data that shows how gas particle mass affects that gas’s behavior. (Exploration 2) • Describe the Maxwell-Boltzmann Distribution. (Explorations 1 and 2) Description of Activity The kinetic-molecular theory states that a collection of gas molecules’ average kinetic energy has a specific value at any given temperature
Free Gas Temperature Oxygen
Fractional Loss of Kinetic Energy Research Question: What is the relationship between initial height of a drop and the fractional loss of kinetic energy in a bouncing ball? Introduction: When an object is held at a height above the ground‚ it possesses gravitational potential energy (Ep = mg∆h) that is directly dependent of the mass and height of which the object is positioned above the ground. When it is dropped‚ Ep is converted into kinetic energy (Ek = ½ mv2)‚ energy the object now possesses
Free Energy Potential energy Kinetic energy
Holt Physics—Chapter 5: Work and Energy Price I. Section 5.1—Work A. Definition of work 1. Work does not mean the same thing in Physics as it does in the everyday sense of the word. 2. Work is defined as a force causing a displacement. Work = force x displacement W = Fd 3. Work is NOT done on an object unless the displacement is greater than zero 4. The only forces that are considered to do work are those that
Premium Potential energy Energy Force
CONSERVATION OF ENERGY OBJECTIVE The purpose of this experiment is to calculate the gravitational potential energy through experimental values‚ to calculate the theoretical potential energy given the experimental kinetic energy in an isolated system while also using the kinetic energy to find the spring constant‚ and to compare kinetic energies and potential energies in an isolated system to see if they are equivalent. METHOD To calculate the gravitational potential energy through experimental
Premium Potential energy Energy Kinetic energy
Energy Lab On November 13th‚ we did a lab to learn about energy. The definition of Kinetic Energy is energy of movement. The definition of Gravitational Potential Energy is energy in an object due to its positioning. The question that we had to answer was whether of not we could calculate the Gravitational Potential Energy and Kinetic Energy of various objects in different locations. To do this lab we had to first weigh the given objects. For this time‚ we weighed : a marble‚ a bouncy ball‚
Premium Potential energy Kinetic energy Energy
Kinetics of Hydrogen Peroxide February 22‚ 2007 Chem. 1130 TA: Ms. Babcock Room 1830 Chemistry Annex PURPOSE OF THE EXPERIMENT Kinetics of Hydrogen Peroxide The major purpose of this experiment is to determine the rate law constant for the reaction of hydrogen peroxide and potassium iodide. In this experiment‚ the goal will be to try to measure the rate law constant at low acidity‚ since at low acidity‚ anything less than 1.0 x 10-3M‚ the effect of the hydrogen ion is negligible. To calculate
Premium Rate equation Reaction rate Chemical kinetics
Kinetics Introduction Nivaldo J. Tro describes kinetics as the study of how changes that occur in chemical reactions take place over time‚ and because of its vast utilization in a multitude of industries‚ it may be one of the most significant and fascinating aspects in the entire chemical world. One application of the study of kinetics can be applied to the determination of the rate of a chemical reaction involving a certain selection of chemicals (FD&C Blue #1 and sodium hypochlorite). The
Premium Chemical reaction Reaction rate Chemistry
Question 1 | 1.61 points | Save | | You are standing on a scale in an elevator. Suddenly you notice your weight decreases. What do you conclude? | | | | | | | | The elevator is accelerating downwards. | | | The elevator is moving at a constant velocity downwards. | | | The elevator is moving at a constant velocity upwards. | | | Your diet is working. | | | The elevator is accelerating upwards. | | | | | | Question 2 | 1.61 points | Save | | Tidal
Premium Potential energy Moon Energy