Introduction/Background
Today’s lab exercise is about diagnostic Urinalysis. Urine reflects the many chemical components found in blood. This test is a good measure of health of endocrine system, kidneys, and urinary tract. Artificial urine samples are used for today’s lab thank goodness. The test that this lab is mostly focused on is called “dipstick” urinalysis test where students will analyze the chemical composition of urine by dipping the chemical indicator stick or “dispstick” into a sample of urine. The chemicals in the pad of the indicator stick will react with various biochemicals, ions and salts found in urine and indicate the presence of hemoglobin, glucose, ketones, protein and specific gravity. The change …show more content…
6. How did you come to this conclusion about Jane’s condition?
The conclusion about renal disease is because proteinuria is indicative of renal disease. Jane might instead have an acute urinary tract infection/inflammation due to not only the protein in her urine but also the blood in the urine.
7. Why is Urine useful as an indicator of the endocrine and kidney disease?
Urine is as an indicator of the endocrine and kidney disease because through its protein, pH, glucose, ketones, specific gravity, and blood that can possibly be found, physicians can diagnose disease. Urine indicates diseases with the kidney because the kidney is what filters out the body fluids that become the urine.
8. What is the laboratory procedure that can be used to test the presence of certain specific biochemicals in urine?
The laboratory procedures that can be used to test the presence of certain specific biochemical in urine could be microscopic analysis, or even a urine electrophoresis test
9. Which blood chemical will be found in high levels in patients diagnosed with untreated diabetes …show more content…
Ingestion of proteins and acidic fruits (e.g., cranberries) can cause acidic urine, and diets high in citrate can cause alkaline urine. (15-17) Urinary pH generally reflects the serum pH, except in patients with renal tubular acidosis (RTA). The inability to acidify urine to a pH of less than 5.5 despite an overnight fast and administration of an acid load is the hallmark of RTA. In type I (distal) RTA, the serum is acidic but the urine is alkaline, secondary to an inability to secrete protons into the urine. Type II (proximal) RTA is characterized by an inability to reabsorb bicarbonate. This situation initially results in alkaline urine, but as the filtered load of bicarbonate decreases, the urine becomes more acidic. Determination of urinary pH is useful in the diagnosis and management of UTIs and calculi. Alkaline urine in a patient with a UTI suggests the presence of a urea-splitting organism, which may be associated with magnesium-ammonium phosphate crystals and can form staghorn calculi. Uric acid calculi are associated with acidic