Los Angeles
A Player Based Approach to Baseball Simulation
A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Statistics
by
Adam Philip Sugano
2008
© Copyright by
Adam Philip Sugano
2008
The dissertation of Adam Philip Sugano is approved.
_______________________________________
Jan de Leeuw
_______________________________________
Rick Paik Schoenberg
_______________________________________
Hal Stern
_______________________________________
Mark Hansen, Committee Co-Chair
_______________________________________
Don Morrison, Committee Co-Chair
University of California, Los Angeles
2008
ii
To my favorite statistician and my Dad, Dr. David S. Sugano, with love and admiration…
iii
TABLE OF CONTENTS
1
Introduction................................................................................................ 1
2
Baseball within a Markov Chain Framework......................................... 5
2.1
Markov Chain Properties................................................................. 6
2.2
Previous Work Modeling Baseball via Markov a Markov Chain.... 8
2.3
The Transition Matrix...................................................................... 9
2.3.1
2.3.2
3
Transition Constraints.......................................................... 13
2.3.3
2.4
Run Potentials...................................................................... 12
Finalized Transition Matrices.............................................. 14
Advantages of Simulation Models................................................... 23
Situational Factors Affecting Transition Probabilities.......................... 25
3.1
Bias and Evolvement of Baseball Statistics.................................... 26
3.2
Measuring Chance vs. Ability.........................................................